1887

Abstract

Five bacterial strains (SYSU YG23, SYSU 10HL1970, 10HP82-10, 10HL1938, 10HP457) isolated from water reservoirs of cooling systems were characterized using a polyphasic taxonomic approach. The isolates were Gram-stain-negative, strictly aerobic and non-motile. Growth was enhanced in the presence of -cysteine. The major fatty acids (>5 %) for the five strains were C, C, C 3-OH, C 3-OH and C 9. Ubiquinone-8 was detected as the respiratory quinone while the polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, three unidentified phospholipids, two unidentified aminophospholipids and three unidentified glycolipids. The strains shared 16S rRNA gene sequence similarities of 99.0–99.2 % with 08HL01032 but less than 95.2 % with other members of the family . The phylogenetic dendrogram based on 16S rRNA gene sequences showed that these strains form a separate cluster along with . This cluster was also confirmed from multilocus-sequence typing based on sequences of the , and genes. Matrix-assisted laser desorption ionization time-of-flight MS analyses of the strains along with closely and distantly related strains also showed a distinct cluster for these strains. Based on the findings from the polyphasic taxonomy studies, the strains were considered to represent two novel species of a new genus for which the names gen. nov., sp. nov. (type strain SYSU YG23=KCTC 42968=DSM 101834) and sp. nov. (type strain SYSU 10HL1970=KCTC 42969=DSM 101835) are proposed. In addition, is proposed to be transferred to this new genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001437
2016-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4832.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001437&mimeType=html&fmt=ahah

References

  1. Angeletti S., Dicuonzo G., Avola A., Crea F., Dedej E., Vailati F., Farina C., De Florio L. 2015; Viridans group Streptococci clinical isolates: MALDI-TOF mass spectrometry versus gene sequence-based identification. PLoS One 10:e0120502 [View Article][PubMed]
    [Google Scholar]
  2. Barns S. M., Grow C. C., Okinaka R. T., Keim P., Kuske C. R. 2005; Detection of diverse new Francisella-like bacteria in environmental samples. Appl Environ Microbiol 71:5494–5500 [View Article][PubMed]
    [Google Scholar]
  3. Brevik O. J., Ottem K. F., Kamaishi T., Watanabe K., Nylund A. 2011; Francisella halioticida sp. nov., a pathogen of farmed giant abalone (Haliotis gigantea) in Japan. J Appl Microbiol 111:1044–1056 [View Article][PubMed]
    [Google Scholar]
  4. Brown C. M., Nuorti P. J., Breiman R. F., Hathcock A. L., Fields B. S., Lipman H. B., Llewellyn G. C., Hofmann J., Cetron M. 1999; A community outbreak of Legionnaires' disease linked to hospital cooling towers: an epidemiological method to calculate dose of exposure. Int J Epidemiol 28:353–359 [View Article][PubMed]
    [Google Scholar]
  5. Dondero T. J. Jr., Rendtorff R. C., Mallison G. F., Weeks R. M., Levy J. S., Wong E. W., Schaffner W. 1980; An outbreak of Legionnaires' disease associated with a contaminated air-conditioning cooling tower. N Engl J Med 302:365–370 [View Article][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229 [View Article]
    [Google Scholar]
  7. Frank J., Reich C., Sharma S., Weisbaum J., Wilson B., Olsen G. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. La Revue Du Praticien 74:2461–2470 [View Article]
    [Google Scholar]
  8. Goodfellow M., Minnikin D. E. 1985 Chemical Methods in Bacterial Systematics pp. 267–285 London/Orlando/San Diego/New York/Toronto/Montreal/Sydney/Tokyo: Academic Press;
    [Google Scholar]
  9. Greig J. E., Carnie J. A., Tallis G. F., Ryan N. J., Tan A. G., Gordon I. R., Zwolak B., Leydon J. A., Guest C. S., Hart W. G. 2004; An outbreak of Legionnaires' disease at the Melbourne Aquarium, April 2000: investigation and case-control studies. Med J Aust 180:566–572[PubMed]
    [Google Scholar]
  10. Gu Q., Li X. D., Qu P. H., Hou S. P., Li J. T., Atwill E. R., Chen S. Y. 2015; Characterization of Francisella species isolated from the cooling water of an air conditioning system. Braz J Microbiol 46:921–927 [View Article]
    [Google Scholar]
  11. Huber B., Escudero R., Busse H. J., Seibold E., Scholz H. C., Anda P., Kämpfer P., Splettstoesser W. D. 2010; Description of Francisella hispaniensis sp. nov., isolated from human blood, reclassification of Francisella novicida (Larson et al. 1955) Olsufiev et al. 1959 as Francisella tularensis sub sp. novicida comb. nov. and emended description of the genus Francisella. Int J Syst Evol Microbiol 60:1887–1896 [View Article][PubMed]
    [Google Scholar]
  12. Klaucke D. N., Vogt R. L., LaRue D., Witherell L. E., Orciari L. A., Spitalny K. C., Pelletier R., Cherry W. B., Novick L. F. 1984; Legionnaires’ disease: the epidemiology of two outbreaks in Burlington, Vermont, 1980. Am J Epidemiol 119:382–391 [CrossRef]
    [Google Scholar]
  13. Ko K. S., Lee H. K., Park M. Y., Lee K. H., Yun Y. J., Woo S. Y., Miyamoto H., Kook Y. H. 2002; Application of RNA polymerase beta-subunit gene (rpoB) sequences for the molecular differentiation of Legionella species. J Clin Microbiol 40:2653–2658 [View Article][PubMed]
    [Google Scholar]
  14. Mikalsen J., Olsen A. B., Tengs T., Colquhoun D. J. 2007; Francisella philomiragia subsp. noatunensis subsp. nov., isolated from farmed Atlantic cod (Gadus morhua L.). Int J Syst Evol Microbiol 57:1960–1965 [View Article][PubMed]
    [Google Scholar]
  15. Nguyen T. M. N., Ilef D., Jarraud S., Rouil L., Campese C., Che D., Haeghebaert S., Ganiayre F., Marcel F. et al. 2006; A community-wide outbreak of Legionnaires disease linked to industrial cooling towers – how far can contaminated aerosols spread?. J Infect Dis 193:102–111 [View Article]
    [Google Scholar]
  16. Ottem K. F., Nylund A., Karlsbakk E., Friis-Møller A., Krossøy B. 2007; Characterization of Francisella sp., GM2212, the first Francisella isolate from marine fish, Atlantic cod (Gadus morhua). Arch Microbiol 187:343–350 [View Article][PubMed]
    [Google Scholar]
  17. Ottem K. F., Nylund A., Karlsbakk E., Friis-Møller A., Kamaishi T. 2009; Elevation of Francisella philomiragia subsp. noatunensis Mikalsen et al. (2007) to Francisella noatunensis comb. nov. [syn. Francisella piscicida Ottem et al. (2008) syn. nov.] and characterization of Francisella noatunensis subsp. orientalis subsp. nov., two important fish pathogens. J Appl Microbiol 106:1231–1243 [View Article][PubMed]
    [Google Scholar]
  18. Qu P. H., Deng X. L., Zhang J., Chen J. D., Zhang J., Zhang J., Zhang Q. X., Xiao Y., Chen S. Y. 2009; Identification and characterization of the Francisella sp. strain 08HL01032 isolated in air condition systems. Acta Microbiol Sinica 48:23–31
    [Google Scholar]
  19. Qu P. H., Chen S. Y., Scholz H. C., Busse H. J., Gu Q., Kämpfer P., Foster J. T., Glaeser S. P., Chen C., Yang Z. C. 2013; Francisella guangzhouensis sp. nov., isolated from air-conditioning systems. Int J Syst Evol Microbiol 63:3628–3635 [View Article][PubMed]
    [Google Scholar]
  20. Rydzewski K., Schulz T., Brzuszkiewicz E., Holland G., Lück C., Fleischer J., Grunow R., Heuner K. 2014; Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol 14:169–15 [View Article][PubMed]
    [Google Scholar]
  21. Seibold E., Maier T., Kostrzewa M., Zeman E., Splettstoesser W. 2010; Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels. J Clin Microbiol 48:1061–1069 [View Article][PubMed]
    [Google Scholar]
  22. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al. 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  25. Wenger J. D., Hollis D. G., Weaver R. E., Baker C. N., Brown G. R., Brenner D. J., Broome C. V. 1989; Infection caused by Francisella philomiragia (formerly Yersinia philomiragia): a newly recognized human pathogen. Ann Intern Med 110:888–892 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001437
Loading
/content/journal/ijsem/10.1099/ijsem.0.001437
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error