1887

Abstract

The taxonomic position of a Gram-staining-positive strain, designated strain S4702 was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus and formed a distinct phyletic line in the 16S rRNA gene tree. S4702 was found to be most closely related to the type strains of (DSM 41968; 97.8 % sequence similarity) and (YIM M 10400; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus were lower than 97.5 %. DNA–DNA relatedness of S4702 and the most closely related strain DSM 41968 was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained -diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C, iso-C, anteiso-C and iso-C. The predominant menaquinone was MK-9(H). The polar lipid profile of S4702 consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702 could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S4702 (DSM 42103=KCTC 29206=CGMCC 4.7357).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001442
2016-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4856.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001442&mimeType=html&fmt=ahah

References

  1. Beffa T., Blanc M., Lyon P. F., Vogt G., Marchiani M., Fischer J. L., Aragno M. 1996; Isolation of Thermus strains from hot composts (60 to 80 °C). Appl Environ Microbiol 62:1723–1727[PubMed]
    [Google Scholar]
  2. Belduz A. O., Dulger S., Demirbag Z. 2003; Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320 [View Article][PubMed]
    [Google Scholar]
  3. Carro L., Zúñiga P., De la Calle F., Trujillo M. E. 2012; Streptomyces pharmamarensis sp. nov. isolated from a marine sediment. Int J Syst Evol Microbiol 62:1165–1170 [View Article][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  6. Clement B. G., Luther G. W., Tebo B. M. 2009; Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochim Cosmochim Acta 73:1878–1889 [View Article]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:143–153 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogeny: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  10. Gonzalez J. M., Saiz-Jimenez C. 2005; A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79 [View Article][PubMed]
    [Google Scholar]
  11. Goodfellow M., Fiedler H.-P. 2010; A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 98:119–142 [View Article][PubMed]
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [View Article]
    [Google Scholar]
  14. Huss V. A., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article][PubMed]
    [Google Scholar]
  15. Jones K. L. 1949; Fresh isolates of actinomycetes in which the presence of sporogeneous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145
    [Google Scholar]
  16. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  17. Kämpfer P. 2012; Genus I. Streptomyces Waksman and Henrici 1943. In Bergey’s Manual of Systematic Bacteriology vol. 5 , pp. 1455–1767 Edited by Whitman W., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M., Ludwig W., Suzuki K.-I. New York, Dordrecht, Heidelberg, London: Springer; [CrossRef]
    [Google Scholar]
  18. Kelly K. L. 1964 Inter-Society Color Council–National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;
    [Google Scholar]
  19. Khan S. T., Tamura T., Takagi M., Shin-Ya K. 2010; Streptomyces tateyamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., isolated from the marine sponge Haliclona sp. Int J Syst Evol Microbiol 60:2775–2779 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  22. Labeda D. P. 1992; DNA–DNA hybridization in the systematics of Streptomyces. Gene 115:249–253 [View Article][PubMed]
    [Google Scholar]
  23. Labeda D. P., Goodfellow M., Brown R., Ward A. C., Lanoot B., Vanncanneyt M., Swings J., Kim S. B., Liu Z. et al. 2012; Phylogenetic study of the species within the family Streptomycetaceae. Antonie van Leeuwenhoek 101:73–104 [View Article][PubMed]
    [Google Scholar]
  24. Lechevalier M. P, Lechevalier H. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [View Article]
    [Google Scholar]
  25. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206 [CrossRef]
    [Google Scholar]
  26. Manfio G. P., Zakrzewska-Czerwinska J., Atalan E., Goodfellow M. 1995; Towards minimal standards for the description of Streptomyces species. Biotechnologia 7–8:242–253
    [Google Scholar]
  27. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  28. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  29. Murray J. W., Codispoti L. A., Friederich G. E. 1995; Oxidation–reduction environments. The suboxic zone in the Black Sea. In Aquatic Chemistry: Interfacial and Interspecies Processes. ACS Advances in Chemistry Series vol. 244 pp. 157–176 Edited by Huang C.-P., O’Melia C. R., Morgan J. J. Washington, DC: American Chemical Society; [CrossRef]
    [Google Scholar]
  30. Nash P., Krent M. M. 1991; Culture media. In Manual of Clinical Microbiology, 5th edn. pp. 1268–1270 Edited by Ballows A., Hauser W. J., Herrmann K. L., Isenberg H. D., Shadomy H. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Phongsopitanun W., Thawai C., Suwanborirux K., Kudo T., Ohkuma M., Tanasupawat S. 2014; Streptomyces chumphonensis sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 64:2605–2610 [View Article][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  33. Sanglier J. J., Whitehead D., Saddler G. S., Ferguson E., Goodfellow M. 1992; Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115:235–242 [View Article][PubMed]
    [Google Scholar]
  34. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids , MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  35. Shirling E. B., Gottlieb D. 1966; Methods for characterizing Streptomyces species. Int J Syst Bacteriol 16:313–340 [View Article]
    [Google Scholar]
  36. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  38. Tian X.-P., Xu Y., Zhang J., Li J., Chen Z., Kim C.-J., Li W.-J., Zhang C.-S., Zhang S. 2012; Streptomyces oceani sp. nov., a new obligate marine actinomycete isolated from a deep-sea sample of seep authigenic carbonate nodule in South China Sea. Antonie van Leeuwenhoek 102:335–343 [CrossRef]
    [Google Scholar]
  39. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  40. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Letts 66:199–202 [View Article]
    [Google Scholar]
  41. Veyisoglu A., Sazak A., Cetin D., Guven K., Sahin N. 2013; Saccharomonospora amisosensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 63:3782–3786 [View Article][PubMed]
    [Google Scholar]
  42. Veyisoglu A., Sahin N. 2014; Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 64:819–826 [View Article][PubMed]
    [Google Scholar]
  43. Veyisoglu A., Sahin N. 2015; Streptomyces klenkii sp. nov. isolated from deep marine sediment. Antonie van Leeuwenhoek 107:273–279 [CrossRef]
    [Google Scholar]
  44. Waksman S. A., Henrici A. T. 1943; The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341[PubMed]
    [Google Scholar]
  45. Waksman S. A. 1961 The Actinomycetes, Classification, Identification and Description of Genera and Species vol. 2 Baltimore: Williams & Wilkins;
    [Google Scholar]
  46. Waksman S. A. 1967 The Actinomycetes. A Summary of Current Knowledge , pp. 280 New York: The Ronald Press Co;
    [Google Scholar]
  47. Wayne L. G., Moore W. E. C., Kandler O., Colwell R. R., Krichevsky M. I., Murray R. G. E., Grimont P. A. D., Brenner D. J., Moore L. H. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  48. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  49. Wright F., Bibb M. J. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene 113:55–65 [View Article][PubMed]
    [Google Scholar]
  50. Xiao J., Wang Y., Luo Y., Xie S.-J., Ruan J.-S., Xu J. 2009; Streptomyces avicenniae sp. nov., a novel actinomycete isolated from the rhizosphere of the mangrove plant Avicennia mariana. Int J Syst Evol Microbiol 59:2624–2628 [View Article][PubMed]
    [Google Scholar]
  51. Xu Y., He J., Tian X. P., Li J., Yang L. L., Xie Q., Tang S. K., Chen Y. G., Zhang S., Li W. J. 2012; Streptomyces glycovorans sp. nov., Streptomyces xishensis sp. nov. and Streptomyces abyssalis sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 62:2371–2377 [View Article][PubMed]
    [Google Scholar]
  52. Zhao X. Q., Li W. J., Jiao W. C., Li Y., Yuan W. J., Zhang Y. Q., Klenk H. P., Suh J. W., Bai F. W. 2009; Streptomyces xinghaiensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 59:2870–2874 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001442
Loading
/content/journal/ijsem/10.1099/ijsem.0.001442
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error