1887

Abstract

Strain JBM2-3, a pale-yellow-coloured, aerobic, catalase-negative, oxidase-positive and Gram-stain-negative bacterium, was isolated from wet soil. The isolate grew aerobically at 25–30 °C (optimum 25 °C), pH 6.0–8.0 (optimum pH 7.0) and in the presence of 0–0.5 % (w/v) NaCl (optimum 0 % NaCl). Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain JBM2-3 belonged to the genus , with a sequence similarity of 96.2 % with Gsoil 1519. The strain showed the typical chemotaxonomic characteristics of the genus , with the presence of menaquinone 7 as the respiratory quinone; the major fatty acids were summed feature 3 (composed of Cω6 ω7), Cω5 and iso-C. The DNA G+C content of strain JBM2-3 was 47.4 mol%. The polar lipid profile contained major amounts of phosphatidylethanolamine and aminophospholipids. On the basis of its phenotypic and genotypic properties, and phylogenetic distinctiveness, strain JBM2-3 should be classified as a representative of a novel species in the genus , for which the name sp. nov. is proposed. The type strain is JBM2-3 (=KCTC 52176=JCM 31298).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001592
2017-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/532.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001592&mimeType=html&fmt=ahah

References

  1. Larkin JM, Borrall R. Family I. Spirosomaceae Larkin and Borrall 1978, 595AL. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 1 Baltimore, MD: Williams & Wilkins; 1984 pp. 125–132
    [Google Scholar]
  2. Baik KS, Kim MS, Park SC, Lee DW, Lee SD et al. Spirosoma rigui sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007; 57:2870–2873 [View Article][PubMed]
    [Google Scholar]
  3. Ten LN, Xu JL, Jin FX, Im WT, Oh HM et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:331–335 [View Article][PubMed]
    [Google Scholar]
  4. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  5. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  6. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  7. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  8. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [CrossRef]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  10. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  11. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  13. Doetsch R. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp. 21–33
    [Google Scholar]
  14. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  15. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48:223–235 [View Article][PubMed]
    [Google Scholar]
  16. Im S, Song D, Joe M, Kim D, Park DH et al. Comparative survival analysis of 12 histidine kinase mutants of Deinococcus radiodurans after exposure to DNA-damaging agents. Bioprocess Biosyst Eng 2013; 36:781–789 [View Article][PubMed]
    [Google Scholar]
  17. Selvam K, Duncan JR, Tanaka M, Battista JR. DdrA, DdrD, and PprA: components of UV and mitomycin C resistance in Deinococcus radiodurans R1. PLoS One 2013; 8:e69007 [View Article][PubMed]
    [Google Scholar]
  18. Kämpfer P, Lodders N, Huber B, Falsen E, Busse HJ. Spirosoma aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol 2008; 58:2803–2806 [View Article][PubMed]
    [Google Scholar]
  19. Kuykendall LD, Roy MAO, Neill JJ, Devine TE. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [CrossRef]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  21. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  22. Shin YK, Lee J-S, Chun CO, Kim H-J, Park Y-H. Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 1996; 6:68–69
    [Google Scholar]
  23. Minnikin DE, Oaydonnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  24. Tamaoka J, Komagata K. Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [CrossRef]
    [Google Scholar]
  25. Fries J, Pfeiffer S, Kuffner M, Sessitsch A. Spirosoma endophyticum sp. nov., isolated from zn- and Cd-accumulating Salix caprea. Int J Syst Evol Microbiol 2013; 63:4586–4590 [View Article][PubMed]
    [Google Scholar]
  26. Ahn JH, Weon HY, Kim SJ, Hong SB, Seok SJ et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2014; 64:3230–3234 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001592
Loading
/content/journal/ijsem/10.1099/ijsem.0.001592
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error