1887

Abstract

Two Gram-stain-positive, aerobic, non-motile, bacterial strains were isolated from symptomatic bark tissue of canker. The isolates were able to grow between 10 and 37 °C, at pH 6–10 and with 0–4 % (w/v) NaCl, with optimal growth at 28–30 °C, pH 7.0–8.0 and with 2 % (w/v) NaCl The strains were found to be oxidase and catalase positive. The menaquinone of strain 26D10-3-4 was MK-7 and the peptidoglycan type A3α based on -Lys-Gly3-?Ala. The polar lipid profiles of strain 26D10-3-4 showed diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids and three unidentified glycolipids, and the major fatty acids found were anteiso-C, iso-C, iso-C and anteiso-C. The DNA G+C content was 38.2 mol%. The two novel isolates shared the highest 16S rRNA gene sequence similarity with ZXM223 (95.0 %). Based on phenotypic and genotypic characteristics, these two strains represent a novel species of a new genus of the family ; the name gen. nov., sp. nov. is proposed. The type strain of the type species is 26D10-3-4 (=CFCC 12725=KCTC 33575). An additional strain of the species is 9-4-1.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001602
2017-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/789.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001602&mimeType=html&fmt=ahah

References

  1. Schleifer KH, Bell JA. Family VIII. Staphylococcaceae fam. nov. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 3 (The Firmicutes) New York: Springer; 2009 p. 392
    [Google Scholar]
  2. Schleifer KH, Bell JA. Staphylococcaceae fam. nov. In list of New Names and New Combinations Previously Effectively, but Not Validly, Published, Validation List no. 132. Int J Syst Evol Microbiol 2010; 60:469–472 [CrossRef]
    [Google Scholar]
  3. Bergmann JF. Microorganismen bei den Wund-Infections-Krankheiten des Menschen Wiesbaden: 1884 pp. 1–122
    [Google Scholar]
  4. Ventosa A, Marquez MC, Ruiz-Berraquero F, Kocur M. Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic gram-positive coccus. Syst Appl Microbiol 1990; 13:29–33 [CrossRef]
    [Google Scholar]
  5. Kloos WE, Ballard DN, George CG, Webster JA, Hubner RJ et al. Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., and Macrococcus bovicus sp. nov. and Macrococcus carouselicus sp. nov. Int J Syst Bacteriol 1998; 48:859–877 [View Article][PubMed]
    [Google Scholar]
  6. Yoon JH, Lee KC, Weiss N, Kang KH, Park YH. Jeotgalicoccus halotolerans gen. nov., sp. nov. and Jeotgalicoccus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal. Int J Syst Evol Microbiol 2003; 53:595–602 [View Article][PubMed]
    [Google Scholar]
  7. Liu WY, Jiang LL, Guo CJ, Yang SS. Jeotgalicoccus halophilus sp. nov., isolated from salt lakes. Int J Syst Evol Microbiol 2011; 61:1720–1724 [View Article][PubMed]
    [Google Scholar]
  8. Alves M, Nogueira C, De Magalhães-Sant'ana A, Chung AP, Morais PV et al. Nosocomiicoccus ampullae gen. nov., sp. nov., isolated from the surface of bottles of saline solution used in wound cleansing. Int J Syst Evol Microbiol 2008; 58:2939–2944 [View Article][PubMed]
    [Google Scholar]
  9. Amoozegar MA, Bagheri M, Makhdoumi-Kakhki A, Didari M, Schumann P et al. Aliicoccus persicus gen. nov., sp. nov., a halophilic member of the Firmicutes isolated from a hypersaline lake. Int J Syst Evol Microbiol 2014; 64:1964–1969 [View Article][PubMed]
    [Google Scholar]
  10. Jenkins D, Richard MG, Daigger GT. Manual on the Causes and Control of Activated Sludge Bulking and Foaming Water Research Commission; 1986
    [Google Scholar]
  11. Li Y, He W, Wang T, Piao CG, Guo LM et al. Acinetobacter qingfengensis sp. nov., isolated from canker bark of Populus × euramericana. Int J Syst Evol Microbiol 2014; 64:1043–1050 [View Article][PubMed]
    [Google Scholar]
  12. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  13. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Manual of Methods for General Microbiology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  14. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M. (editors). Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  16. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55:541–555 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  20. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [CrossRef]
    [Google Scholar]
  21. Mesbah M, Premachandran U, Whithman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [CrossRef]
    [Google Scholar]
  22. Hulton CS, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other Enterobacteria. Mol Microbiol 1991; 5:825–834 [View Article][PubMed]
    [Google Scholar]
  23. Louws FJ, Fulbright DW, Stephens CT, Bruijn FJ. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. App. Environ. Microb. 1994; 60:2286–2295
    [Google Scholar]
  24. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  25. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  26. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article][PubMed]
    [Google Scholar]
  27. Du HJ, Zhang YQ, Liu HY, Su J, Wei YZ et al. Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 2013; 63:900–904 [View Article][PubMed]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  29. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  30. Mackenzie SL. Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 1987; 70:151–160[PubMed]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Qu Z, Li Z, Zhang X, Zhang XH. Salinicoccus qingdaonensis sp. nov., isolated from coastal seawater during a bloom of green algae. Int J Syst Evol Microbiol 2012; 62:545–549 [View Article][PubMed]
    [Google Scholar]
  33. Ventosa A, Marquez MC, Weiss N, Tindall BJ. Transfer of Marinococcus hispanicus to the genus Salinicoccus as Salinicoccus hispanicus comb. nov. Syst Appl Microbiol 1992; 15:530–534 [View Article]
    [Google Scholar]
  34. Zhang W, Xue Y, Ma Y, Zhou P, Ventosa A et al. Salinicoccus alkaliphilus sp. nov., a novel alkaliphile and moderate halophile from Baer Soda Lake in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 2002; 52:789–793 [View Article][PubMed]
    [Google Scholar]
  35. França L, Rainey FA, Nobre MF, Da Costa MS. Salinicoccus salsiraiae sp. nov.: a new moderately halophilic Gram-positive bacterium isolated from salted skate. Extremophiles 2006; 10:531–536 [View Article][PubMed]
    [Google Scholar]
  36. Aslam Z, Lim JH, Im WT, Yasir M, Chung YR et al. Salinicoccus jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2007; 57:633–638 [View Article][PubMed]
    [Google Scholar]
  37. Chen YG, Cui XL, Pukall R, Li HM, Yang YL et al. Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 2007; 57:2327–2332 [View Article][PubMed]
    [Google Scholar]
  38. Pakdeeto A, Tanasupawat S, Thawai C, Moonmangmee S, Kudo T et al. Salinicoccus siamensis sp. nov., isolated from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 2007; 57:2004–2008 [View Article][PubMed]
    [Google Scholar]
  39. Zhang YQ, Yu LY, Liu HY, Zhang YQ, Xu LH et al. Salinicoccus luteus sp. nov., isolated from a desert soil. Int J Syst Evol Microbiol 2007; 57:1901–1905 [View Article][PubMed]
    [Google Scholar]
  40. Amoozegar MA, Schumann P, Hajighasemi M, Ashengroph M, Razavi MR. Salinicoccus iranensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 2008; 58:178–183 [View Article][PubMed]
    [Google Scholar]
  41. Wang X, Xue Y, Yuan S, Zhou C, Ma Y. Salinicoccus halodurans sp. nov., a moderate halophile from saline soil in China. Int J Syst Evol Microbiol 2008; 58:1537–1541 [View Article][PubMed]
    [Google Scholar]
  42. Chen YG, Cui XL, Wang YX, Zhang YQ, Li QY et al. Salinicoccus albus sp. nov., a halophilic bacterium from a salt mine. Int J Syst Evol Microbiol 2009; 59:874–879 [View Article][PubMed]
    [Google Scholar]
  43. Jung MJ, Kim MS, Roh SW, Shin KS, Bae JW. Salinicoccus carnicancri sp. nov., a halophilic bacterium isolated from a Korean fermented seafood. Int J Syst Evol Microbiol 2010; 60:653–658 [View Article][PubMed]
    [Google Scholar]
  44. Kämpfer P, Arun AB, Busse HJ, Young CC, Lai WA et al. Salinicoccus sesuvii sp. nov., isolated from the rhizosphere of Sesuvium portulacastrum. Int J Syst Evol Microbiol 2011; 61:2348–2352 [View Article][PubMed]
    [Google Scholar]
  45. Ramana CV, Srinivas A, Subhash Y, Tushar L, Mukherjee T et al. Salinicoccus halitifaciens sp. nov., a novel bacterium participating in halite formation. Antonie van Leeuwenhoek 2013; 103:885–898 [View Article][PubMed]
    [Google Scholar]
  46. Hoyles L, Collins MD, Foster G, Falsen E, Schumann P. Jeotgalicoccus pinnipedialis sp. nov., from a southern Elephant seal (Mirounga leonina). Int J Syst Evol Microbiol 2004; 54:745–748 [View Article][PubMed]
    [Google Scholar]
  47. Chen YG, Zhang YQ, Shi JX, Xiao HD, Tang SK et al. Jeotgalicoccus marinus sp. nov., a marine bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 2009; 59:1625–1629 [View Article][PubMed]
    [Google Scholar]
  48. Guo XQ, Li R, Zheng LQ, Lin DQ, Sun JQ et al. Jeotgalicoccus huakuii sp. nov., a halotolerant bacterium isolated from seaside soil. Int J Syst Evol Microbiol 2010; 60:1307–1310 [View Article][PubMed]
    [Google Scholar]
  49. Liu ZX, Chen J, Tang SK, Zhang YQ, He JW et al. Jeotgalicoccus nanhaiensis sp. nov., isolated from intertidal sediment, and emended description of the genus Jeotgalicoccus. Int J Syst Evol Microbiol 2011; 61:2029–2034 [View Article][PubMed]
    [Google Scholar]
  50. Martin E, Klug K, Frischmann A, Busse HJ, Kämpfer P et al. Jeotgalicoccus coquinae sp. nov. and Jeotgalicoccus aerolatus sp. nov., isolated from poultry houses. Int J Syst Evol Microbiol 2011; 61:237–241 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001602
Loading
/content/journal/ijsem/10.1099/ijsem.0.001602
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error