1887

Abstract

Pediococci are halophilic lactic acid bacteria, within the family , which are involved in the fermentation of various salted and fermented foods, such as kimchi and jeotgal. In this study, a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS method was developed for the rapid identification of species of the genus . Of the 130 spectra aligned with the Biotyper taxonomy database, 122 isolates (93.9 %) yielded log scores <1.7, which means they were not identifiable. After registering the spectra of 11 reference strains of the genus , all of the isolates were correctly identified, of which 84 (64.6 %) and 46 (35.4 %) were identified at the species and genus level, respectively. In comparing food origins, no relationship was found between the bacterial characteristics and food environment. We were able to produce a Biotyper system for identification of members of the genus with locally extended reference strains. The MALDI-TOF MS method is fast, simple and reliable for discriminating between species in the genus and therefore will be useful for quality control in determining the spoilage of alcoholic beverages or in the production of fermented food.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001626
2017-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/744.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001626&mimeType=html&fmt=ahah

References

  1. Haakensen M, Dobson CM, Hill JE, Ziola B. Reclassification of Pediococcus dextrinicus (Coster and White 1964) back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. Int J Syst Evol Microbiol 2009; 59:615–621 [View Article][PubMed]
    [Google Scholar]
  2. Felis GE, Torriani S, Dellaglio F. Reclassification of Pediococcus urinaeequi (ex Mees 1934) Garvie 1988 as Aerococcus urinaeequi comb. nov. Int J Syst Evol Microbiol 2005; 55:1325–1327 [View Article][PubMed]
    [Google Scholar]
  3. Wieme A, Cleenwerck I, van Landschoot A, Vandamme P. Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici. Int J Syst Evol Microbiol 2012; 62:3105–3108 [View Article][PubMed]
    [Google Scholar]
  4. Renouf V, Claisse O, Lonvaud-Funel A. Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 2007; 75:149–164 [View Article][PubMed]
    [Google Scholar]
  5. Sakamoto K, Konings WN. Beer spoilage bacteria and hop resistance. Int J Food Microbiol 2003; 89:105–124 [View Article][PubMed]
    [Google Scholar]
  6. Delaherche A, Claisse O, Lonvaud-Funel A. Detection and quantification of Brettanomyces bruxellensis and 'ropy' Pediococcus damnosus strains in wine by real-time polymerase chain reaction. J Appl Microbiol 2004; 97:910–915 [View Article][PubMed]
    [Google Scholar]
  7. Gindreau E, Walling E, Lonvaud-Funel A. Direct polymerase chain reaction detection of ropy Pediococcus damnosus strains in wine. J Appl Microbiol 2001; 90:535–542 [View Article][PubMed]
    [Google Scholar]
  8. Leroy F, de Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Tech 2004; 15:67–78 [View Article]
    [Google Scholar]
  9. Vanbelle M, Teller E, Focant M. Probiotics in animal nutrition: a review. Arch Anim Nutr Berlin 1990; 40:543–567 [View Article]
    [Google Scholar]
  10. Tannock GW. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol 1997; 15:270–274 [View Article][PubMed]
    [Google Scholar]
  11. Bhowmik T, Marth EH. Rote of Micrococcus and Pediococcus species in cheese ripening: a review. J Dairy Sci 1990; 73:859–866 [View Article]
    [Google Scholar]
  12. Luchansky JB, Glass KA, Harsono KD, Degnan AJ, Faith NG et al. Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in Turkey summer sausage. Appl Environ Microbiol 1992; 58:3053–3059[PubMed]
    [Google Scholar]
  13. Mattila-Sandholm T, Haikara A, Skyttä E. The effect of Pediococcus damnosus and Pediococcus pentosaceus on the growth of pathogens in minced meat. Int J Food Microbiol 1991; 13:87–94 [View Article][PubMed]
    [Google Scholar]
  14. Cai Y, Kumai S, Ogawa M, Benno Y, Nakase T. Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation. Appl Environ Microbiol 1999; 65:2901–2906[PubMed]
    [Google Scholar]
  15. Gaggìa F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010; 141:S15–S28 [View Article][PubMed]
    [Google Scholar]
  16. Cheun H-I, Makino S-I, Shirahata T, Mikami M. The practical application of pediocin produced by pediococcus acidilactici in food. Biosci Microflora 2000; 19:47–50 [View Article]
    [Google Scholar]
  17. Bennik M, Smid EJ, Gorris L. Vegetable-associated Pediococcus parvulus produces pediocin PA-1. Appl Environ Microbiol 1997; 63:2074–2076[PubMed]
    [Google Scholar]
  18. Franz CM, Vancanneyt M, Vandemeulebroecke K, de Wachter M, Cleenwerck I et al. Pediococcus stilesii sp. nov., isolated from maize grains. Int J Syst Evol Microbiol 2006; 56:329–333 [View Article][PubMed]
    [Google Scholar]
  19. Mora D, Fortina MG, Parini C, Manachini PL. Identification of Pediococcus acidilactici and Pediococcus pentosaceus based on 16S rRNA and ldhD gene-targeted multiplex PCR analysis. FEMS Microbiol Lett 1997; 151:231–236 [View Article][PubMed]
    [Google Scholar]
  20. Mora D, Parini C, Fortina MG, Manachini PL. Discrimination among Pediocin AcH/PA-1 producer strains by comparison of pedB and pedD amplified genes and by multiplex PCR assay. Syst Appl Microbiol 1998; 21:454–460 [View Article][PubMed]
    [Google Scholar]
  21. Mora D, Fortina MG, Parini C, Daffonchio D, Manachini PL. Genomic subpopulations within the species Pediococcus acidilactici detected by multilocus typing analysis: relationships between pediocin AcH/PA-1 producing and non-producing strains. Microbiology 2000; 146:2027–2038 [View Article][PubMed]
    [Google Scholar]
  22. Barney M, Volgyi A, Navarro A, Ryder D. Riboprinting and 16S rRNA gene sequencing for identification of brewery Pediococcus isolates. Appl Environ Microbiol 2001; 67:553–560 [View Article][PubMed]
    [Google Scholar]
  23. Satokari R, Mattila-Sandholm T, Suihko ML. Identification of Pediococci by ribotyping. J Appl Microbiol 2000; 88:260–265 [View Article][PubMed]
    [Google Scholar]
  24. Barros RR, Carvalho MG, Peralta JM, Facklam RR, Teixeira LM. Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J Clin Microbiol 2001; 39:1241–1246 [View Article][PubMed]
    [Google Scholar]
  25. Simpson PJ, Stanton C, Fitzgerald GF, Ross RP. Genomic diversity within the genus Pediococcus as revealed by randomly amplified polymorphic DNA PCR and pulsed-field gel electrophoresis. Appl Environ Microbiol 2002; 68:765–771 [View Article][PubMed]
    [Google Scholar]
  26. Mora D, Parini C, Fortina MG, Manachini PL. Development of molecular RAPD marker for the identification of Pediococcus acidilactici strains. Syst Appl Microbiol 2000; 23:400–408 [View Article][PubMed]
    [Google Scholar]
  27. Omar NB, Ampe F, Raimbault M, Guyot JP, Tailliez P. Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia). Syst Appl Microbiol 2000; 23:285–291 [View Article][PubMed]
    [Google Scholar]
  28. Kim KO, Shin KS, Kim MN, Shin KS, Labeda DP et al. Reassessment of the status of Streptomyces setonii and reclassification of Streptomyces fimicarius as a later synonym of Streptomyces setonii and Streptomyces albovinaceus as a later synonym of Streptomyces globisporus based on combined 16S rRNA/gyrB gene sequence analysis. Int J Syst Evol Microbiol 2012; 62:2978–2985 [View Article][PubMed]
    [Google Scholar]
  29. Hong Y, Yang HS, Li J, Han SK, Chang HC et al. Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE. J Sci Food Agric 2014; 94:296–300 [View Article][PubMed]
    [Google Scholar]
  30. Schweitzer VA, van Dam AP, Hananta IP, Schuurman R, Kusters JG et al. Identification of Neisseria gonorrhoeae by the bruker biotyper Matrix-Assisted laser desorption Ionization-Time of flight mass spectrometry system is improved by a database extension. J Clin Microbiol 2016; 54:1130–1132 [View Article][PubMed]
    [Google Scholar]
  31. Bae JW, Rhee SK, Park JR, Chung WH, Nam YD et al. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 2005; 71:8825–8835 [View Article][PubMed]
    [Google Scholar]
  32. Kim J, Chun J, Han HU. Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 2000; 50:1915–1919 [View Article][PubMed]
    [Google Scholar]
  33. Lee JS, Heo GY, Lee JW, Oh YJ, Park JA et al. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int J Food Microbiol 2005; 102:143–150 [View Article][PubMed]
    [Google Scholar]
  34. Lee KW, Park JY, Sa HD, Jeong JH, Jin DE et al. Probiotic properties of Pediococcus strains isolated from jeotgals, salted and fermented Korean sea-food. Anaerobe 2014; 28:199–206 [View Article][PubMed]
    [Google Scholar]
  35. Park J-M, Shin J-H, Lee D-W, Song J-C, Suh H-J et al. Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci Biotechnol 2010; 19:541–546 [View Article]
    [Google Scholar]
  36. Pfannebecker J, Fröhlich J. Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol 2008; 128:288–296 [View Article][PubMed]
    [Google Scholar]
  37. de Bruyne K, Franz CM, Vancanneyt M, Schillinger U, Mozzi F et al. Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int J Syst Evol Microbiol 2008; 58:2909–2916 [View Article][PubMed]
    [Google Scholar]
  38. Linder P. Uber ein neues in Matzmaischen Vorkommendes, milchsaurebildendes. Wochenschr Brau 1887; 4:437–440
    [Google Scholar]
  39. Zhang B, Tong H, Dong X. Pediococcus cellicola sp. nov., a novel lactic acid coccus isolated from a distilled-spirit-fermenting cellar. Int J Syst Evol Microbiol 2005; 55:2167–2170 [View Article][PubMed]
    [Google Scholar]
  40. Dobson CM, Deneer H, Lee S, Hemmingsen S, Glaze S et al. Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int J Syst Evol Microbiol 2002; 52:2003–2010 [View Article][PubMed]
    [Google Scholar]
  41. Skerman VBD, Sneath PHA, Mcgowan V. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980; 30:225–420 [View Article]
    [Google Scholar]
  42. Liu L, Zhang B, Tong H, Dong X. Pediococcus ethanolidurans sp. nov., isolated from the walls of a distilled-spirit-fermenting cellar. Int J Syst Evol Microbiol 2006; 56:2405–2408 [View Article][PubMed]
    [Google Scholar]
  43. Back W. Zur taxonomie der gattung Pediococcus. Brauwiss 1978; 31:237–250
    [Google Scholar]
  44. Gunther HL, White HR. The cultural and physiological characters of the Pediococci. J Gen Microbiol 1961; 26:185–197 [View Article][PubMed]
    [Google Scholar]
  45. Sakaguchi K, Mori H. Comparative study on Pediococcus halophilus, P. soyae, P. hornari, P. urinaeequi and related species. J Gen Appl Microbiol 1969; 15:159–167 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001626
Loading
/content/journal/ijsem/10.1099/ijsem.0.001626
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error