1887

Abstract

An obligately piezophilic strain was isolated from an amphipod crustacean obtained in the Challenger Deep region of the Mariana Trench during the DEEPSEA CHALLENGE expedition. The strain, MTCD1, grew at extremely high hydrostatic pressures, with a growth range of 80–140 MPa (optimum, 120 MPa) at 6 °C. Phylogenetic analyses based on the 16S rRNA gene sequence indicate that it is closely affiliated with the genus . Comparative 16S rRNA gene sequence analyses revealed 95.7, 95.5 and 95.2 % similarity to ABE-1, Y233G and ATCC 27364, respectively. The major cellular fatty acids were C, C and C (docosahexaenoic acid), and the sole isoprenoid quinone produced was ubiqinone-8. DNA G+C content was 48.6 mol%. The strain was positive for oxidase and catalase activities. Based on the results from this study, strain MTCD1 is a novel Gram-negative species of the genus , and the name sp. nov. (type strain MTCD1=ATCC TSD-5=JCM 30270) is proposed. It is the most piezophilic organism yet described.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001671
2017-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/824.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001671&mimeType=html&fmt=ahah

References

  1. Bowman JP. The family Colwelliaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Springer-Verlag; 2014 pp. 179–194
    [Google Scholar]
  2. Deming JW, Somers LK, Straube WL, Swartz DG, MacDonell MT. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 1988; 10:152–160 [View Article]
    [Google Scholar]
  3. Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22: ω63). Int J Syst Evol Microbiol 1998; 48:1171–1180 [View Article]
    [Google Scholar]
  4. Yumoto I, Kawasaki K, Iwata H, Matsuyama H, Okuyama H. Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int J Syst Evol Microbiol 1998; 48:1357–1362 [View Article][PubMed]
    [Google Scholar]
  5. Techtmann SM, Fitzgerald KS, Stelling SC, Joyner DC, Uttukar SM et al. Colwellia psychrerythraea strains from distant deep sea basins show adaptation to local conditions. Front Environ Sci 2015; 4:33
    [Google Scholar]
  6. Jung SY, Oh TK, Yoon JH. Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 2006; 56:33–37 [View Article][PubMed]
    [Google Scholar]
  7. Zhang DC, Yu Y, Xin YH, Liu HC, Zhou PJ et al. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice. Int J Syst Evol Microbiol 2008; 58:1931–1934 [View Article][PubMed]
    [Google Scholar]
  8. Yu Y, Li HR, Zeng YX. Colwellia chukchiensis sp. nov., a psychrotolerant bacterium isolated from the Arctic Ocean. Int J Syst Evol Microbiol 2011; 61:850–853 [View Article][PubMed]
    [Google Scholar]
  9. Liu Y, Liu L-Z, Zhong Z-P, Zhou Y-G, Liu Y et al. Colwellia aquaemaris sp. nov., isolated from the Cynoglossus semilaevis culture tank in a recirculating mariculture system. Int J of Syst Evol Microbiol 2014; 64:3926–3930 [View Article]
    [Google Scholar]
  10. Wang FQ, Lin XZ, Chen GJ, Du ZJ. Colwellia arctica sp. nov., isolated from Arctic marine sediment. Antonie van Leeuwenhoek 2015; 107:723–729 [View Article][PubMed]
    [Google Scholar]
  11. Choi EJ, Kwon HC, Koh HY, Kim YS, Yang HO. Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfish Asterias amurensis. Int J of Syst Evol Microbiol 2010; 60:1952–1957 [View Article]
    [Google Scholar]
  12. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Colwellia meonggei sp. nov., a novel gammaproteo bacterium isolated from sea squirt Halocynthia roretzi. Antonie van Leeuwenhoek 2013; 104:1021–1027 [View Article][PubMed]
    [Google Scholar]
  13. Yayanos AA. Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol 1995; 49:777–805 [View Article]
    [Google Scholar]
  14. Yayanos AA, Dietz AS, Boxtel RV. Obligately barophilic bacterium from the Mariana trench. Proc Natl Acad Sci USA 1981; 78:5212–5215 [View Article][PubMed]
    [Google Scholar]
  15. DeLong EF, Franks DG, Yayanos AA. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 1997; 63:2105–2108[PubMed]
    [Google Scholar]
  16. Yayanos AA. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 1986; 83:9542–9546 [View Article][PubMed]
    [Google Scholar]
  17. Chastain RA, Yayanos AA. Ultrastructural changes in an obligately barophilic marine bacterium after decompression. Appl Environ Microbiol 1991; 57:1489–1497[PubMed]
    [Google Scholar]
  18. Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan trench. Int J Syst Evol Microbiol 2004; 54:1627–1631 [View Article][PubMed]
    [Google Scholar]
  19. Huston AL, Krieger-Brockett BB, Deming JW. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2000; 2:383–388 [View Article][PubMed]
    [Google Scholar]
  20. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 2005; 102:10913–10918 [View Article][PubMed]
    [Google Scholar]
  21. DeLong EF, Yayanos AA. Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol 1986; 51:730–737[PubMed]
    [Google Scholar]
  22. Fang J, Bazylinski DA. Deep-sea geomicrobiology. In Michiels C, Bartlett DH. (editors) High-Pressure Microbiology Washington, DC: American Society for Microbiology Press; 2008 pp. 237–264 [CrossRef]
    [Google Scholar]
  23. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J et al. Extremely barophilic bacteria isolated from the Mariana trench, challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol 1998; 64:1510–1513[PubMed]
    [Google Scholar]
  24. Abe F, Horikoshi K. The biotechnological potential of piezophiles. Trends Biotechnol 2001; 19:102–108 [View Article][PubMed]
    [Google Scholar]
  25. Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta 2002; 1595:367–381 [View Article][PubMed]
    [Google Scholar]
  26. Gallo ND, Cameron J, Hardy K, Fryer P, Bartlett DH et al. Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities. Deep Sea Res Part 1 Oceanogr Res Pap 2015; 99:119–133 [View Article]
    [Google Scholar]
  27. Nakanishi M, Hashimoto J. A precise bathymetric map of the world’s deepest seafloor, challenger deep in the Mariana Trench. Mar Geophys Res 2011; 32:455–463 [View Article]
    [Google Scholar]
  28. Hardy K, Sutphen B, Cameron J. Technology of the DEEPSEACHALLENGE expedition (Part 1 of 2: The Landers) (July 2014). Ocean News and Technology 2014 www.oceannews.com/technology-of-the-deepsea-challenge-expedition
    [Google Scholar]
  29. Fofonoff NP, Millard RC. Algorithms for computation of fundamental properties of seawater. UNESCO Tech Pap Mar Sci 1983; 44:1–53
    [Google Scholar]
  30. Yayanos AA. Deep-sea piezophilic bacteria. Methods Microbiol 2001; 30:615–637 [CrossRef]
    [Google Scholar]
  31. Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 2010; 18:413–422 [View Article][PubMed]
    [Google Scholar]
  32. Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 1999; 3:71–77 [View Article][PubMed]
    [Google Scholar]
  33. Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K et al. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana trench. Int J Syst Evol Microbiol 2006; 56:1233–1237 [View Article][PubMed]
    [Google Scholar]
  34. Dussalt HP. An improved technique for staining red-halophilic bacteria. J Bacteriol 1955; 10:484–485
    [Google Scholar]
  35. Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel from the deepest piezophilic bacterium cold-seep sediments in the Japan trench. Int J Syst Evol Microbiol 2002; 52:1527–1532 [View Article][PubMed]
    [Google Scholar]
  36. Hudson JA, Morgan HW, Daniel RM. A numerical classification of some thermus isolates. Microbiology 1986; 132:531–540 [View Article]
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–655
    [Google Scholar]
  38. Fujii K, Satomi M, Fukui Y, Matsunobu S, Morifuku Y et al. Streptomyces abietis sp. nov., a cellulolytic bacterium isolated from soil of a pine forest. Int J Syst Evol Microbiol 2013; 63:4754–4759 [View Article]
    [Google Scholar]
  39. Komagata K, Suzuki K. Lipid and Cell-wall analysis in bacterial systematics. Meth Microbiol 1997; 19:161–207 [CrossRef]
    [Google Scholar]
  40. Kabuto H, Amakawa M, Mankura M, Yamanushi TT, Mori A. Docosahexaenoic acid ethyl ester enhances 6-hydroxydopamine-induced neuronal damage by induction of lipid peroxidation in mouse striatum. Neurochem Res 2009; 34:1299–1303 [View Article][PubMed]
    [Google Scholar]
  41. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  42. Katayama-Fujimura Y, Komatsu Y, Kuraishi H, Kaneko T. Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 1984; 48:3169–3172 [View Article]
    [Google Scholar]
  43. Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat'eva TF, Tsaplina IA et al. Reclassification of 'Sulfobacillus thermosulfidooxidans subsp. thermotolerans' strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 2005; 55:941–947 [View Article][PubMed]
    [Google Scholar]
  44. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  45. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  46. Nogi Y, Hosoya S, Kato C, Horikoshi K. Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan trench. Int J Syst Evol Microbiol 2007; 57:1360–1364 [View Article][PubMed]
    [Google Scholar]
  47. Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E. Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Arch Microbiol 1998; 169:231–238 [View Article][PubMed]
    [Google Scholar]
  48. D'Aoust JY, Kushner DJ. Vibrio psychroerythrus sp. n.: classification of the psychrophilic marine bacterium, NRC 1004. J Bacteriol 1972; 111:340–342[PubMed]
    [Google Scholar]
  49. Nogi Y, Kato C, Horikoshi K. Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan trench sediment. J Gen Appl Microbiol 1998; 44:289–295 [View Article][PubMed]
    [Google Scholar]
  50. Nogi Y, Kato C, Horikoshi K. Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 1998; 170:331–338 [View Article][PubMed]
    [Google Scholar]
  51. Nogi Y, Masui N, Kato C. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 1998; 2:1–8 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001671
Loading
/content/journal/ijsem/10.1099/ijsem.0.001671
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error