1887

Abstract

The phylum represents one of the highly diverse but poorly characterized phylogenetic groups of the domain . The taxonomically described acidobacteria belong to 27 genera and 49 species, which represent subdivisions 1, 3, 4, 6, 8, 10 and 23 of this phylum. However, the corresponding family ranks have been defined only for some of these characterized micro-organisms. Here, we suggest the establishment of a novel family, fam. nov., to accommodate taxonomically described members of subdivision 3 . This family is characterized by Gram-stain-negative, non-spore-forming and non-motile rods, which divide by binary fission. Members of this family are mildly acidophilic, mesophilic, aerobic and facultatively anaerobic chemoheterotrophs that utilize various sugars and polysaccharides. The major fatty acids are iso-C and C 7; the cells also contain significant amounts of 13,16-dimethyloctacosanedioic (iso-diabolic) acid. Currently, the family comprises the genera and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001687
2017-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/498.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001687&mimeType=html&fmt=ahah

References

  1. Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G et al. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 1997; 153:181–190 [View Article][PubMed]
    [Google Scholar]
  2. Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998; 180:4765–4774[PubMed]
    [Google Scholar]
  3. Barns SM, Takala SL, Kuske CR. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 1999; 65:1731–1737[PubMed]
    [Google Scholar]
  4. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 2016; 7:744 [View Article][PubMed]
    [Google Scholar]
  5. Barns SM, Cain EC, Sommerville L, Kuske CR. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 2007; 73:3113–3116 [View Article][PubMed]
    [Google Scholar]
  6. Thrash JC, Coates JD. Family I. Acidobacteriaceae fam. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2011 pp. 728
    [Google Scholar]
  7. Foesel BU, Mayer S, Luckner M, Wanner G, Rohde M et al. Occallatibacter riparius gen. nov., sp. nov. and Occallatibacter savannae sp. nov., acidobacteria isolated from Namibian soils, and emended description of the family Acidobacteriaceae. Int J Syst Evol Microbiol 2016; 66:219–229 [View Article][PubMed]
    [Google Scholar]
  8. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015; 38:534–544 [View Article][PubMed]
    [Google Scholar]
  9. Validation list Number 168 List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66:1603–1606
    [Google Scholar]
  10. Wüst PK, Foesel BU, Geppert A, Huber KJ, Luckner M et al. Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savanna soil and description of the novel family Pyrinomonadaceae. Int J Syst Evol Microbiol 2016; 66:3355–3366 [View Article][PubMed]
    [Google Scholar]
  11. Thrash JC, Coates JD. Family I. Holophagaceae fam. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2011 pp. 732
    [Google Scholar]
  12. Thrash JC, Coates JD. Family I. Acanthopleuribacteraceae fam. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2011 pp. 734
    [Google Scholar]
  13. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 2009; 3:442–453 [View Article][PubMed]
    [Google Scholar]
  14. Eichorst SA, Kuske CR, Schmidt TM. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl Environ Microbiol 2011; 77:586–596 [View Article][PubMed]
    [Google Scholar]
  15. Foesel BU, Nägele V, Naether A, Wüst PK, Weinert J et al. Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils. Environ Microbiol 2014; 16:658–675 [View Article][PubMed]
    [Google Scholar]
  16. Serkebaeva YM, Kim Y, Liesack W, Dedysh SN. Pyrosequencing-based assessment of the Bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS One 2013; 8:e63994 [View Article][PubMed]
    [Google Scholar]
  17. Danilova OV, Belova SE, Gagarinova IV, Dedysh SN. Microbial community composition and methanotroph diversity of a subarctic wetland in Russia. Microbiology 2016; 85:583–591 [View Article]
    [Google Scholar]
  18. Kulichevskaya IS, Suzina NE, Liesack W, Dedysh SN. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. Int J Syst Evol Microbiol 2010; 60:301–306 [View Article][PubMed]
    [Google Scholar]
  19. Kulichevskaya IS, Suzina NE, Rijpstra WI, Sinninghe Damsté JS, Dedysh SN. Paludibaculum fermentans gen. nov., sp. nov., a facultative anaerobe capable of dissimilatory iron reduction from subdivision 3 of the Acidobacteria. Int J Syst Evol Microbiol 2014; 64:2857–2864 [View Article][PubMed]
    [Google Scholar]
  20. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM et al. Three genomes from the phylumAcidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 2009; 75:2046–2056 [CrossRef]
    [Google Scholar]
  21. Damsté JS, Rijpstra WI, Hopmans EC, Weijers JW, Foesel BU et al. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 2011; 77:4147–4154 [View Article][PubMed]
    [Google Scholar]
  22. Challacombe JF, Eichorst SA, Hauser L, Land M, Xie G et al. Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus solibacter usitatus Ellin6076. PLoS One 2011; 6:e24882 [View Article][PubMed]
    [Google Scholar]
  23. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  24. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001687
Loading
/content/journal/ijsem/10.1099/ijsem.0.001687
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error