1887

Abstract

While all names of new taxa submitted to the , either in direct submissions or in validation requests for names effectively published elsewhere, are subject to nomenclatural review to ensure that they are acceptable based on the rules of the International Code of Nomenclature of Prokaryotes, the names of taxa have not been subjected to such a review. Formally, this was not necessary because the rank of is not covered by the Code, and the names lack the priority afforded validly published names. However, many taxa of different ranks are widely discussed in the scientific literature, and a proposal to incorporate the nomenclature of uncultured prokaryotes under the provisions of the Code is currently pending. Therefore, an evaluation of the names of taxa published thus far is very timely. Out of the ~400 names found in the literature, 120 contradict the current rules of the Code or are otherwise problematic. A list of those names of taxa that need correction is presented here and alternative names that agree with the provisions of the Code are proposed.

Keyword(s): Candidatus , ICNP , names and validation
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001715
2017-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/1085.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001715&mimeType=html&fmt=ahah

References

  1. Von Graevenitz A, Berger U. A plea for linguistic accuracy. Int J Syst Bacteriol 1980; 30:520 [CrossRef]
    [Google Scholar]
  2. Murray RG, Schleifer KH. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 1994; 44:174–176 [View Article][PubMed]
    [Google Scholar]
  3. Murray RG, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 1995; 45:186–187 [View Article][PubMed]
    [Google Scholar]
  4. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Prokaryotic code (2008 revision). Int J Syst Evol Microbiol 2015 First Published Online:20 November 2015, doi:10.1099/ijsem.0.000778
    [Google Scholar]
  5. Jagoueix S, Bove J-M, Garnier M. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. Int J Syst Evol Microbiol 1994; 44:379–386
    [Google Scholar]
  6. Garnier M, Jagoueix-Eveillard S, Cronje PR, Le Roux HF, Bové JM. Genomic characterization of a liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape Province of South Africa. Proposal of 'Candidatus Liberibacter africanus subsp. capensis'. Int J Syst Evol Microbiol 2000; 50:2119–2125 [View Article][PubMed]
    [Google Scholar]
  7. Fagen JR, Leonard MT, Coyle JF, McCullough CM, Davis-Richardson AG et al. Liberibacter crescens gen. nov., sp. nov., the first cultured member of the genus Liberibacter. Int J Syst Evol Microbiol 2014; 64:2461–2466 [View Article][PubMed]
    [Google Scholar]
  8. Whitman WB. Modest proposals to expand the type material for naming of prokaryotes. Int J Syst Evol Microbiol 2016; 66:2108–2112 [View Article][PubMed]
    [Google Scholar]
  9. Whitman WB. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc.; in association with Bergey’s Manual Trust 2015 [CrossRef]
    [Google Scholar]
  10. López-Legentil S, Song B, Bosch M, Pawlik JR, Turon X. Cyanobacterial diversity and a new Acaryochloris-like symbiont from Bahamian sea-squirts. PLoS One 2011; 6:e23938 [View Article][PubMed]
    [Google Scholar]
  11. Darby AC, Chandler SM, Welburn SC, Douglas AE. Aphid-symbiotic bacteria cultured in insect cell lines. Appl Environ Microbiol 2005; 71:4833–4839 [View Article][PubMed]
    [Google Scholar]
  12. Kragelund C, Kong Y, Van der Waarde J, Thelen K, Eikelboom D et al. Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants. Microbiology 2006; 152:3003–3012 [View Article][PubMed]
    [Google Scholar]
  13. Levantesi C, Beimfohr C, Geurkink B, Rossetti S, Thelen K et al. Filamentous Alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 2004; 27:716–727 [View Article][PubMed]
    [Google Scholar]
  14. Greub G, La Scola B, Raoult D. Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg Infect Dis 2004; 10:470–477 [View Article][PubMed]
    [Google Scholar]
  15. Nováková E, Hypša V, Nguyen P, Husník F, Darby AC. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi. (Diptera: Hippoboscidae). Stand Genomic Sci 2016; 11:72 [View Article][PubMed]
    [Google Scholar]
  16. Drancourt M, Berger P, Raoult D. Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J Clin Microbiol 2004; 42:2197–2202 [View Article][PubMed]
    [Google Scholar]
  17. Blazes DL, Mullins K, Smoak BL, Jiang J, Canal E et al. Novel Bartonella. agent as cause of verruga peruana. Emerg Infect Dis 2013; 9:1111–1114 [CrossRef]
    [Google Scholar]
  18. Kaewmongkol G, Kaewmongkol S, Burmej H, Bennett MD, Fleming PA et al. Diversity of Bartonella species detected in arthropod vectors from animals in Australia. Comp Immunol Microbiol Infect Dis 2011; 34:411–417 [View Article][PubMed]
    [Google Scholar]
  19. Lilley TM, Veikkolainen V, Pulliainen AT. Molecular detection of Candidatus Bartonella hemsundetiensis in bats. Vector Borne Zoonot Dis 2015; 15:706–708 [CrossRef]
    [Google Scholar]
  20. Bai Y, Kosoy M, Martin A, Ray C, Sheff K et al. Characterization of Bartonella strains isolated from black-tailed prairie dogs (Cynomys ludovicianus). Vector Borne Zoonotic Dis 2008; 8:1–6 [View Article][PubMed]
    [Google Scholar]
  21. Moran NA, Dale C, Dunbar H, Smith WA, Ochman H. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ Microbiol 2003; 5:116–126[PubMed] [CrossRef]
    [Google Scholar]
  22. Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Hironaka M et al. Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis. Appl Environ Microbiol 2010; 76:4130–4135 [View Article][PubMed]
    [Google Scholar]
  23. Sauer C, Stackebrandt E, Gadau J, Hölldobler B, Gross R. Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol 2000; 50:1877–1886 [View Article][PubMed]
    [Google Scholar]
  24. Magrí A, Vanotti MB, Szögi AA. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers. Bioresour Technol 2012; 114:231–240 [View Article]
    [Google Scholar]
  25. Gruwell ME, Hardy NB, Gullan PJ, Dittmar K. Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Appl Environ Microbiol 2010; 76:7521–7525 [View Article][PubMed]
    [Google Scholar]
  26. Van Oevelen S, De Wachter R, Vandamme P, Robbrecht E, Prinsen E. 'Candidatus Burkholderia calva' and 'Candidatus Burkholderia nigropunctata' as leaf gall endosymbionts of African Psychotria. Int J Syst Evol Microbiol 2004; 54:2237–2239 [View Article][PubMed]
    [Google Scholar]
  27. Lemaire B, Robbrecht E, Van Wyk B, Van Oevelen S, Verstraete B et al. Identification, origin, and evolution of leaf nodulating symbionts of Sericanthe (Rubiaceae). J Microbiol 2011; 49:935–941 [View Article][PubMed]
    [Google Scholar]
  28. Lemaire B, Van Oevelen S, De Block P, Verstraete B, Smets E et al. Identification of the bacterial endosymbionts in leaf nodules of Pavetta (Rubiaceae). Int J Syst Evol Microbiol 2012; 62:202–209 [View Article][PubMed]
    [Google Scholar]
  29. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 2011; 39:3204–3223 [View Article][PubMed]
    [Google Scholar]
  30. Klappenbach JA, Pierson BK. Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium 'Candidatus Chlorothrix halophila' gen. nov., sp. nov., recovered from hypersaline microbial mats. Arch Microbiol 2004; 181:17–25 [View Article][PubMed]
    [Google Scholar]
  31. Karlsen M, Nylund A, Watanabe K, Helvik JV, Nylund S et al. Characterization of 'Candidatus Clavochlamydia salmonicola': an intracellular bacterium infecting salmonid fish. Environ Microbiol 2008; 10:208–218 [View Article][PubMed]
    [Google Scholar]
  32. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G et al. "Candidatus Cloacamonas acidaminovorans": genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 2008; 190:2572–2579 [View Article][PubMed]
    [Google Scholar]
  33. Jacobi CA, Reichenbach H, Tindall BJ, Stackebrandt E. "Candidatus comitans," a bacterium living in coculture with Chondromyces crocatus (Myxobacteria). Int J Syst Bacteriol 1996; 46:119–122 [View Article][PubMed]
    [Google Scholar]
  34. Oren A. Proposal to modify Rule 10a of the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2014; 64:3919 [View Article]
    [Google Scholar]
  35. Zhilina TN, Zavarzina DG, Kolganova TV, Tourova TP, Zavarzin GA. Candidatus Contubernalis alkalaceticum,” an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum. Microbiology 2005; 74:695–703 [View Article]
    [Google Scholar]
  36. Ferrantini F, Fokin SI, Modeo L, Andreoli I, Dini F et al. "Candidatus Cryptoprodotis polytropus," a novel Rickettsia-like organism in the ciliated protist Pseudomicrothorax dubius (Ciliophora, Nassophorea). J Eukaryot Microbiol 2009; 56:119–129 [View Article][PubMed]
    [Google Scholar]
  37. Oren A, Vandamme P, Schink B. Notes on the use of Greek word roots in genus and species names of prokaryotes. Int J Syst Evol Microbiol 2016; 66:2129–2140 [View Article][PubMed]
    [Google Scholar]
  38. Brouqui P, Sanogo YO, Caruso G, Merola F, Raoult D. Candidatus Ehrlichia walkerii: a new Ehrlichia detected in Ixodes ricinus. tick collected from asymptomatic humans in Northern Italy. Ann N Y Acad Sci 2003; 990:134–140[PubMed] [CrossRef]
    [Google Scholar]
  39. Trojan D, Schreiber L, Bjerg JT, Bøggild A, Yang T et al. A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Syst Appl Microbiol 2016; 39:297–306 [View Article][PubMed]
    [Google Scholar]
  40. Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB et al. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 2008; 10:727–737 [View Article][PubMed]
    [Google Scholar]
  41. Anderson CM, Haygood MG. α-Proteobacterial symbionts of marine bryozoans in the genus Watersipora. Appl Environ Microbiol 2007; 73:303–311 [View Article][PubMed]
    [Google Scholar]
  42. Xia Y, Kong Y, Thomsen TR, Halkjaer Nielsen P. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing Saprospiraceae ("Candidatus Epiflobacter" spp.) in activated sludge. Appl Environ Microbiol 2008; 74:2229–2238 [View Article][PubMed]
    [Google Scholar]
  43. Kuechler SM, Gibbs G, Burckhardt D, Dettner K, Hartung V. Diversity of bacterial endosymbionts and bacteria–host co-evolution in Gondwanan relict moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae). Environ Microbiol 2013; 15:2031–2042 [View Article][PubMed]
    [Google Scholar]
  44. Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F et al. Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 2011; 5:1735–12747 [View Article][PubMed]
    [Google Scholar]
  45. Toenshoff ER, Gruber D, Horn M. Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts. Environ Microbiol 2012; 14:1284–1295 [View Article][PubMed]
    [Google Scholar]
  46. Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 2005; 71:3302–3310 [View Article][PubMed]
    [Google Scholar]
  47. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. Strict host–symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 2006; 4:e337 [View Article][PubMed]
    [Google Scholar]
  48. Nikolaev YA, Kozlov MN, Kevbrina MV, Dorofeev AG, Pimenov NV et al. Candidatus “Jettenia moscovienalis” sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation. Microbiology 2015; 84:256–262 [View Article]
    [Google Scholar]
  49. Du Y, Maslov DA, Chang KP. Monophyletic origin of β-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp. Proc Natl Acad Sci USA 1994; 91:8437–8441 [View Article][PubMed]
    [Google Scholar]
  50. Quinn RA, Metzler A, Tlusty M, Smolowitz RM, Leberg P et al. Lesion bacterial communities in American lobsters with diet-induced shell disease. Dis Aquat Organ 2012; 98:221–233 [View Article][PubMed]
    [Google Scholar]
  51. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 2009; 75:2046–2056 [View Article][PubMed]
    [Google Scholar]
  52. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 2000; 23:93–106 [View Article][PubMed]
    [Google Scholar]
  53. Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T. Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 2012; 78:4149–4156 [View Article][PubMed]
    [Google Scholar]
  54. Hansen AK, Trumble JT, Stouthamer R, Paine TD. A new huanglongbing species, "Candidatus Liberibacter psyllaurous," found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol 2008; 74:5862–5865 [View Article][PubMed]
    [Google Scholar]
  55. Kölsch G, Matz-Grund C, Pedersen BV. Ultrastructural and molecular characterization of endosymbionts of the reed beetle genus Macroplea (Chrysomelidae, Donaciinae), and proposal of "Candidatus Macropleicola appendiculatae" and "Candidatus Macropleicola muticae". Can J Microbiol 2009; 55:1250–1260 [View Article][PubMed]
    [Google Scholar]
  56. Deng A, Lin W, Shi N, Wu J, Sun Z et al. In vitro assembly of the bacterial actin protein MamK from ‘Candidatus Magnetobacterium casensis’ in the phylum Nitrospirae. Protein Cell 2016; 7:267–280 [View Article][PubMed]
    [Google Scholar]
  57. Snaidr J, Fuchs B, Wallner G, Wagner M, Schleifer KH et al. Phylogeny and in situ. identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environ Microbiol 1999; 1:125–135 [View Article][PubMed]
    [Google Scholar]
  58. Borrel G, Harris HM, Tottey W, Mihajlovski A, Parisot N et al. Genome sequence of "Candidatus Methanomethylophilus alvus" Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 2012; 194:6944–6945 [View Article][PubMed]
    [Google Scholar]
  59. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010; 464:543–548 [View Article][PubMed]
    [Google Scholar]
  60. Levantesi C, Rossetti S, Thelen K, Kragelund C, Krooneman J et al. Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants. Environ Microbiol 2006; 8:1552–1563 [View Article][PubMed]
    [Google Scholar]
  61. Blackall LL, Stratton H, Bradford D, Dot TD, Sjörup C et al. "Candidatus Microthrix parvicella", a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 1996; 46:344–346 [View Article][PubMed]
    [Google Scholar]
  62. Tagawa M, Matsumoto K, Inokuma H. Molecular detection of Mycoplasma wenyonii and 'Candidatus Mycoplasma haemobos' in cattle in Hokkaido, Japan. Vet Microbiol 2008; 132:177–180 [View Article][PubMed]
    [Google Scholar]
  63. Maggi RG, Mascarelli PE, Balakrishnan N, Rohde CM, Kelly CM et al. "Candidatus Mycoplasma haemomacaque" and Bartonella quintana bacteremia in cynomolgus monkeys. J Clin Microbiol 2013; 51:1408–1411 [View Article][PubMed]
    [Google Scholar]
  64. Foley JE, Pedersen NC. 'Candidatus Mycoplasma haemominutum', a low-virulence epierythrocytic parasite of cats. Int J Syst Evol Microbiol 2001; 51:815–817 [View Article][PubMed]
    [Google Scholar]
  65. Millán J, López-Roig M, Delicado V, Serra-Cobo J, Esperón F. Widespread infection with hemotropic mycoplasmas in bats in Spain, including a hemoplasma closely related to "Candidatus. Mycoplasma hemohominis". Comp Immunol Microbiol Infect Dis 2015; 39:9–12 [View Article][PubMed]
    [Google Scholar]
  66. Willi B, Boretti FS, Baumgartner C, Tasker S, Wenger B et al. Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland. J Clin Microbiol 2006; 44:961–969 [View Article][PubMed]
    [Google Scholar]
  67. Boscaro V, Vannini C, Fokin SI, Verni F, Petroni G. Characterization of "Candidatus Nebulobacter yamunensis" from the cytoplasm of Euplotes aediculatus (Ciliophora, Spirotrichea) and emended description of the family Francisellaceae. Syst Appl Microbiol 2012; 35:432–440 [View Article][PubMed]
    [Google Scholar]
  68. Yabsley MJ, Murphy SM, Luttrell MP, Wilcox BR, Howerth EW et al. Characterization of 'Candidatus Neoehrlichia lotoris' (family Anaplasmataceae) from raccoons (Procyon lotor). Int J Syst Evol Microbiol 2008; 58:2794–2798 [View Article][PubMed]
    [Google Scholar]
  69. Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 2011; 6:e16626 [View Article][PubMed]
    [Google Scholar]
  70. Kim BK, Jung MY, Yu DS, Park SJ, Oh TK et al. Genome sequence of an ammonia-oxidizing soil archaeon, "Candidatus Nitrosoarchaeum koreensis" MY1. J Bacteriol 2011; 193:5539–5540 [View Article][PubMed]
    [Google Scholar]
  71. De La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 2008; 10:810–813 [View Article][PubMed]
    [Google Scholar]
  72. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C et al. Isolation of 'Candidatus. Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 2016; 92:fiw057 [View Article][PubMed]
    [Google Scholar]
  73. Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA. Genome sequence of "Candidatus Nitrosopumilus salaria" BD31, an ammonia-oxidizing archaeon from the San Francisco Bay estuary. J Bacteriol 2012; 194:2121–2122 [View Article][PubMed]
    [Google Scholar]
  74. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 2011; 108:15892–15897 [View Article][PubMed]
    [Google Scholar]
  75. Blackall LL, Seviour EM, Bradford D, Rossetti S, Tandoi V et al. 'Candidatus Nostocoida limicola', a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol 2000; 50:703–709 [View Article][PubMed]
    [Google Scholar]
  76. Fenchel T, Thar R. "Candidatus ovobacter propellens": a large conspicuous prokaryote with an unusual motility behaviour. FEMS Microbiol Ecol 2004; 48:231–238 [View Article][PubMed]
    [Google Scholar]
  77. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 2002; 418:630–633 [View Article][PubMed]
    [Google Scholar]
  78. Zreik L, Bové JM, Garnier M. Phylogenetic characterization of the bacterium-like organism associated with marginal chlorosis of strawberry and proposition of a Candidatus taxon for the organism, 'Candidatus phlomobacter fragariae'. Int J Syst Bacteriol 1998; 48:257–261 [View Article][PubMed]
    [Google Scholar]
  79. Hendry TA, Dunlap PV. The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus. Mol Phylogenet Evol 2011; 61:834–843 [View Article][PubMed]
    [Google Scholar]
  80. Zreik L, Carle P, Bové JM, Garnier M. Characterization of the mycoplasmalike organism associated with witches'-broom disease of lime and proposition of a Candidatus taxon for the organism, "Candidatus Phytoplasma aurantifolia". Int J Syst Bacteriol 1995; 45:449–453 [View Article][PubMed]
    [Google Scholar]
  81. White DT, Blackall LL, Scott PT, Walsh KB. Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in 'Candidatus Phytoplasma australiense' and a new taxon, 'Candidatus Phytoplasma australasia'. Int J Syst Bacteriol 1998; 48:941–951 [View Article][PubMed]
    [Google Scholar]
  82. Davis RE, Zhao Y, Dally EL, Jomantiene R, Lee IM et al. 'Candidatus Phytoplasma sudamericanum', a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.). Int J Syst Evol Microbiol 2012; 62:984–989 [View Article][PubMed]
    [Google Scholar]
  83. Horn M, Fritsche TR, Linner T, Gautom RK, Harzenetter MD et al. Obligate bacterial endosymbionts of Acanthamoeba spp. related to the β-Proteobacteria: proposal of 'Candidatus Procabacter acanthamoebae' gen. nov., sp. nov. Int J Syst Evol Microbiol 2002; 52:599–605 [View Article][PubMed]
    [Google Scholar]
  84. Vannini C, Ferrantini F, Verni F, Petroni G. A new obligate bacterial symbiont colonizing the ciliate Euplotes in brackish and freshwater: ‘Candidatus Protistobacter heckmanni’. Aquat Microb Ecol 2013; 70:233–243 [View Article]
    [Google Scholar]
  85. Fukatsu T, Hosokawa T, Koga R, Nikoh N, Kato T et al. Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse. Appl Environ Microbiol 2009; 75:3796–3799 [View Article][PubMed]
    [Google Scholar]
  86. Labruna MB, Whitworth T, Bouyer DH, McBride J, Camargo LM et al. Rickettsia bellii and Rickettsia amblyommii in Amblyomma ticks from the state of Rondônia, Western Amazon, Brazil. J Med Entomol 2004; 41:1073–1081[PubMed] [CrossRef]
    [Google Scholar]
  87. Jiang J, Blair PJ, Felices V, Moron C, Cespedes M et al. Phylogenetic analysis of a novel molecular isolate of spotted fever group rickettsiae from Northern Peru: Candidatus Rickettsia andeanae. Ann N Y Acad Sci 2005; 1063:337–342 [View Article][PubMed]
    [Google Scholar]
  88. Jiang J, Maina AN, Knobel DL, Cleaveland S, Laudisoit A et al. Molecular detection of Rickettsia felis and Candidatus Rickettsia asemboensis in fleas from human habitats, Asembo, Kenya. Vector Borne Zoonotic Dis 2013; 13:550–558 [View Article]
    [Google Scholar]
  89. Mura A, Masala G, Tola S, Satta G, Fois F et al. First direct detection of rickettsial pathogens and a new rickettsia, 'Candidatus Rickettsia barbariae', in ticks from Sardinia, Italy. Clin Microbiol Infect 2008; 14:1028–1033 [View Article][PubMed]
    [Google Scholar]
  90. Zou Y, Wang Q, Fu Z, Liu P, Jin H et al. Detection of spotted fever group Rickettsia in Haemaphysalis longicornis from Hebei Province, China. J Parasitol 2011; 97:960–962 [View Article][PubMed]
    [Google Scholar]
  91. Anstead CA, Chilton NB. Detection of a novel Rickettsia (Alphaproteobacteria: Rickettsiales) in rotund ticks (Ixodes kingi) from Saskatchewan, Canada. Ticks Tick Borne Dis 2013; 4:202–206 [View Article][PubMed]
    [Google Scholar]
  92. Izzard L, Graves S, Cox E, Fenwick S, Unsworth N et al. Novel rickettsia in ticks, Tasmania, Australia. Emerg Infect Dis 2009; 15:1654–1656 [View Article][PubMed]
    [Google Scholar]
  93. Gruber-Vodicka HR, Dirks U, Leisch N, Baranyi C, Stoecker K et al. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc Natl Acad Sci USA 2011; 108:12078–12083 [View Article][PubMed]
    [Google Scholar]
  94. Kuechler SM, Dettner K, Kehl S. Characterization of an obligate intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae). Appl Environ Microbiol 2011; 77:2869–2876 [View Article][PubMed]
    [Google Scholar]
  95. Newton IL, Woyke T, Auchtung TA, Dilly GF, Dutton RJ et al. The Calyptogena magnifica chemoautotrophic symbiont genome. Science 2007; 315:998–1000 [View Article][PubMed]
    [Google Scholar]
  96. Thompson CL, Vier R, Mikaelyan A, Wienemann T, Brune A. 'Candidatus Arthromitus' revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ Microbiol 2012; 14:1454–1465 [View Article][PubMed]
    [Google Scholar]
  97. Oakeson KF, Gil R, Clayton AL, Dunn DM, Von Niederhausern AC et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 2014; 6:76–93 [View Article][PubMed]
    [Google Scholar]
  98. Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 2005; 71:8802–8810 [View Article][PubMed]
    [Google Scholar]
  99. Fehr A, Walther E, Schmidt-Posthaus H, Nufer L, Wilson A et al. Candidatus. Syngnamydia venezia, a novel member of the phylum Chlamydiae from the broad nosed pipefish, Syngnathus typhle. PLoS One 2013; 8:e70853 [View Article][PubMed]
    [Google Scholar]
  100. Liu Z, Klatt CG, Ludwig M, Rusch DB, Jensen SI et al. 'Candidatus Thermochlorobacter aerophilum:' an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J 2012; 6:1869–1882 [View Article][PubMed]
    [Google Scholar]
  101. Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnár DA et al. "Candidatus Thiobios zoothamnicoli," an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 2006; 72:2014–2021 [View Article][PubMed]
    [Google Scholar]
  102. Thao ML, Gullan PJ, Baumann P. Secondary (γ-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol 2002; 68:3190–3197 [View Article][PubMed]
    [Google Scholar]
  103. Kostanjšek R, Pašić L, Daims H, Sket B. Structure and community composition of sprout-like bacterial aggregates in a dinaric karst subterranean stream. Microb Ecol 2013; 66:5–18 [View Article][PubMed]
    [Google Scholar]
  104. Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S et al. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Curr Biol 2007; 17:881–886 [View Article][PubMed]
    [Google Scholar]
  105. Gonella E, Negri I, Marzorati M, Mandrioli M, Sacchi L et al. Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of Bois noir in Vitis vinifera. Appl Environ Microbiol 2011; 77:1423–1435 [View Article][PubMed]
    [Google Scholar]
  106. Bohr UR, Segal I, Primus A, Wex T, Hassan H et al. Detection of a putative novel Wolinella species in patients with squamous cell carcinoma of the esophagus. Helicobacter 2003; 8:608–612[PubMed] [CrossRef]
    [Google Scholar]
  107. Vandekerckhove TT, Willems A, Gillis M, Coomans A. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). Int J Syst Evol Microbiol 2000; 50:2197–2205 [View Article][PubMed]
    [Google Scholar]
  108. Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H et al. A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS One 2007; 2:e667 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001715
Loading
/content/journal/ijsem/10.1099/ijsem.0.001715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error