1887

Abstract

A bacterial strain, designated Agd-32, was isolated from a water sample taken from the Agongdian Reservoir in Taiwan and characterized using a polyphasic taxonomy approach. Cells of strain Agd-32 were Gram-stain-variable, aerobic, motile by means of peritrichous flagella, endospore-forming, rod-shaped and surrounded by a thick capsule. Strain Agd-32 contained anteiso-C and C as the predominant fatty acids. The major isoprenoid quinone was MK-7, and the polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophosphoglycolipid, one unidentified glycolipid, one unidentified phospholipid and one unidentified lipid. The DNA G+C content of the genomic DNA was 56.0 mol%. Strain Agd-32 contained -diaminopimelic acid in the cell-wall peptidoglycan. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Agd-32 belonged to the genus and was most closely related to with sequence similarity of 96.1 % and less than 95.9 % sequence similarity with other members of the genus. On the basis of the phylogenetic inference and phenotypic data, strain Agd-32 should be classified as a representative of a novel species, for which the name sp. nov. is proposed. The type strain is Agd-32 (=BCRC 80902=LMG 28836=KCTC 33691).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001768
2017-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1582.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001768&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1994; 64:253–260 [View Article]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  3. de Vos P, Ludwig W, Schleifer K-H, Whitman WB. Paenibacillaceae fam. nov. in list of new names and new combinations previously effectively, but not validly, published, validation list no. 132. Int J Syst Evol Microbiol 2010; 60:469–472 [CrossRef]
    [Google Scholar]
  4. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 1997; 47:299–306 [View Article][PubMed]
    [Google Scholar]
  5. De Vos P, Ludwig W, Schleifer K-H, Whitman WB. Family IV. Paenibacillaceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 3 New York: Springer; 2009 pp. 269
    [Google Scholar]
  6. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  7. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  8. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [View Article][PubMed]
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  10. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37:D141–D145 [View Article][PubMed]
    [Google Scholar]
  11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  14. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [CrossRef]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  18. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington; 1993
    [Google Scholar]
  19. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758[PubMed]
    [Google Scholar]
  20. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  21. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al (editors) Methods for General and Molecular Bacteriology, 3rd ed Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  22. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al (editors) Methods for General and Molecular Bacteriology, 3rd ed Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  23. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article][PubMed]
    [Google Scholar]
  24. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  25. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 121–161
    [Google Scholar]
  28. Dsouza M, Taylor MW, Ryan J, Mackenzie A, Lagutin K et al. Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 2014; 64:1406–1411 [View Article][PubMed]
    [Google Scholar]
  29. Saha P, Krishnamurthi S, Bhattacharya A, Sharma R, Chakrabarti T. Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2010; 60:422–428 [View Article][PubMed]
    [Google Scholar]
  30. Komagata K, Suzuki KL. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [CrossRef]
    [Google Scholar]
  31. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 265–309
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  33. Wang M, Yang M, Zhou G, Luo X, Zhang L et al. Paenibacillus tarimensis sp. nov., isolated from sand in Xinjiang, China. Int J Syst Evol Microbiol 2008; 58:2081–2085 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001768
Loading
/content/journal/ijsem/10.1099/ijsem.0.001768
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error