1887

Abstract

A novel Gram-staining-negative straight or curved rod-shaped, moderately halophilic and alkaliphilic bacterium, designated strain GBSy1, was isolated from a sediment sample from the coastal-marine wetland Gomishan in Iran. GBSy1 was motile, and formed non-pigmented, mucoid colonies. Growth occurred with between 1 and 15 % (w/v) NaCl and the isolate grew optimally with 5 % (w/v) NaCl. The optimum pH and temperature for growth were 8.5 and 34 °C, while the strain was able to grow at pH 7.0–10 and 4–40 °C. On the basis of the results of 16S rRNA gene sequence analysis, GBSy1 was shown to represent a member of the genus within the class family and showed closest phylogenetic similarity to CF12–14 (97.7 %). The DNA G+C content of GBSy1 was 51.2 mol%. The cells of GBSy1 contained the isoprenoid ubiquinones Q-8, Q-9 and Q-10 (92, 2 and 2 %, respectively). The major cellular fatty acids of the isolate were iso-C 3-OH, iso-C, iso-C and iso-Cω9 and its polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and three unknown phospholipids. The level of DNA–DNA relatedness between GBSy1 and DSM 22154 was 31 %. All these features confirmed the placement of GBSy1 within the genus . On the basis of evidence from this study, a novel species of the genus , sp. nov., is proposed, with GBSy1 (=IBRC-M 10764=CECT 8340) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001772
2017-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2087.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001772&mimeType=html&fmt=ahah

References

  1. Ivanova EP, Romanenko LA, Chun J, Matte MH, Matte GR et al. Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Microbiol 2000; 50:901–907 [View Article][PubMed]
    [Google Scholar]
  2. Huang SP, Chang HY, Chen JS, Jean WD, Shieh WY. Aliidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water from bitou Harbour, Taiwan. Int J Syst Evol Microbiol 2012; 62:155–161 [CrossRef]
    [Google Scholar]
  3. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudo alteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1773–1788 [View Article][PubMed]
    [Google Scholar]
  4. Jean WD, Shieh WY, Chiu HH. Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae . Int J Syst Evol Microbiol 2006; 56:899–905 [View Article][PubMed]
    [Google Scholar]
  5. Taborda M, Antunes A, Tiago I, Veríssimo A, Nobre MF et al. Description of Idiomarina insulisalsae sp. nov., isolated from the soil of a sea salt evaporation pond, proposal to transfer the species of the genus Pseudidiomarina to the genus Idiomarina and emended description of the genus Idiomarina . Syst Appl Microbiol 2009; 32:371–378 [View Article][PubMed]
    [Google Scholar]
  6. Zhang YJ, Zhang XY, Zhao HL, Zhou MY, Li HJ et al. Idiomarina maris sp. nov., a marine bacterium isolated from sediment. Int J Syst Evol Microbiol 2012; 62:370–375 [View Article][PubMed]
    [Google Scholar]
  7. Chiu HH, Rogozin DY, Huang SP, Degermendzhy AG, Shieh WY et al. Aliidiomarina shirensis sp. nov., a halophilic bacterium isolated from Shira lake in Khakasia, Southern Siberia, and a proposal to transfer Idiomarina maris to the genus Aliidiomarina . Int J Syst Evol Microbiol 2014; 64:1334–1339 [View Article][PubMed]
    [Google Scholar]
  8. Wang G, Wu H, Zhang X, Zhang H, Yang X et al. Aliidiomarina sanyensis sp. nov., a hexabromocyclododecane assimilating bacterium from the pool of Spirulina platensis cultivation, Sanya, China. Antonie Van Leeuwenhoek 2013; 104:309–314 [View Article][PubMed]
    [Google Scholar]
  9. Ali Amoozegar M, Shahinpei A, Abolhassan Shahzadeh Fazeli S, Schumann P, Spröer C et al. Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland. Int J Syst Evol Microbiol 2016; 66:2099–2105 [View Article][PubMed]
    [Google Scholar]
  10. Farooqui SM, Wright MH, Greene AC. Aliidiomarina minuta sp. nov., a haloalkaliphilic bacterium that forms ultra-small cells under non-optimal conditions. Antonie van Leeuwenhoek 2016; 109:83–93 [View Article][PubMed]
    [Google Scholar]
  11. Srinivas TN, Nupur, Anil Kumar P. Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater. Antonie van Leeuwenhoek 2012; 101:761–768 [View Article][PubMed]
    [Google Scholar]
  12. Xu L, Sun J-Q, Wang L-J, Liu X-Z, Ji Y-Y et al. Aliidiomarina soli sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2016
    [Google Scholar]
  13. Atlas RM. Media for Environmental Microbiology, 2nd ed. Boca Raton: Taylor and Francis Group; 2005
    [Google Scholar]
  14. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  15. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7[PubMed]
    [Google Scholar]
  16. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  17. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DJ. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 24:4876–4882 [CrossRef]
    [Google Scholar]
  20. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  23. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  25. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  26. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, D C: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; pp. 607–654
    [Google Scholar]
  28. Harrigan WF, McCance ME. Laboratory Methods in Food and Dairy Microbiology London: Academic Press; 1976
    [Google Scholar]
  29. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed]
    [Google Scholar]
  30. Montes MJ, Bozal N, Mercadé E. Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. Int J Syst Evol Microbiol 2008; 58:1346–1349 [View Article][PubMed]
    [Google Scholar]
  31. Quesada E, Ventosa A, Ruiz-Berraquero F, Ramos-Cormenzana A. Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 1984; 34:287–292 [View Article]
    [Google Scholar]
  32. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  33. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  34. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  35. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  36. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  37. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  38. Monciardini P, Cavaletti L, Schumann P, Rohde M, Donadio S. Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol 2003; 53:569–576 [View Article][PubMed]
    [Google Scholar]
  39. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article][PubMed]
    [Google Scholar]
  40. Choi DH, Cho BC. Idiomarina seosinensis sp. nov., isolated from hypersaline water of a solar saltern in Korea. Int J Syst Evol Microbiol 2005; 55:379–383 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001772
Loading
/content/journal/ijsem/10.1099/ijsem.0.001772
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error