1887

Abstract

The anaerobic, non-motile strain HM was isolated from the naphthalene-degrading, sulfate-reducing enrichment culture N47. For 20 years, strain HM has been a stable member of culture N47 although it is neither able to degrade naphthalene nor able to reduce sulfate in pure culture. The highest similarity of the 16S rRNA gene sequence of strain HM (89 %) is with a cultivated member of the family , strain H1 (=DSM 7334), an obligately anaerobic, thermophilic spirochaete isolated from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA. In contrast to this strain and the majority of spirochaete species described, strain HM showed a rod-shaped morphology. Growth occurred at temperatures between 12 and 50 °C (optimum 37 °C) but the isolate was not able to grow at 60 °C. The strain fermented various sugars including -glucose, -fructose, lactose and sucrose. Addition of 0.1 % (w/v) yeast extract or 0.1 % (w/v) tryptone to the culture medium was essential for growth and could not be replaced by either the vitamin solutions tested or by 0.1 % (w/v) peptone or 0.1 % (w/v) casamino acids. The DNA G+C content of the isolate was 51.5 mol%. The major fatty acids were C, Cω13, Cω9, Cω11 and Cω9. Based on the unique morphology and the phylogenetic distance from the closest cultivated relative, a novel genus and species, gen. nov., sp. nov., is proposed. The type strain is strain HM (=DSM 100378=JCM 30982).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001799
2017-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1288.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001799&mimeType=html&fmt=ahah

References

  1. Canale-Parola E. Order I: spirochaetales. In Krieg NR, Holt JC. (editors) Bergey’s Manual of Systematic Bacteriology Baltimore, MD: The Williams & Wilkins Co; 1984 pp. 38–39
    [Google Scholar]
  2. Charon NW, Goldstein SF. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 2002; 36:47–73 [View Article][PubMed]
    [Google Scholar]
  3. Li C, Motaleb A, Sal M, Goldstein SF, Charon NW. Spirochete periplasmic flagella and motility. J Mol Microbiol Biotechnol 2000; 2:345–354[PubMed]
    [Google Scholar]
  4. Paster BJ, Canale-Parola E. Involvement of periplasmic fibrils in motility of spirochetes. J Bacteriol 1980; 141:359–364[PubMed]
    [Google Scholar]
  5. Paster BJ, Dewhirst FE. Phylogenetic foundation of spirochetes. J Mol Microbiol Biotechnol 2000; 2:341–344[PubMed]
    [Google Scholar]
  6. Dröge S, Fröhlich J, Radek R, König H. Spirochaeta coccoides sp. nov., a novel coccoid Spirochete from the hindgut of the termite Neotermes castaneus. Appl Environ Microbiol 2006; 72:392–397 [View Article][PubMed]
    [Google Scholar]
  7. Miyazaki M, Sakai S, Ritalahti KM, Saito Y, Yamanaka Y et al. Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta. Int J Syst Evol Microbiol 2014; 64:4147–4154 [View Article][PubMed]
    [Google Scholar]
  8. Ritalahti KM, Justicia-Leon SD, Cusick KD, Ramos-Hernandez N, Rubin M et al. Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int J Syst Evol Microbiol 2012; 62:210–216 [View Article][PubMed]
    [Google Scholar]
  9. Caro-Quintero A, Ritalahti KM, Cusick KD, Löffler FE, Konstantinidis KT. The chimeric genome of Sphaerochaeta: nonspiral spirochetes that break with the prevalent dogma in spirochete biology. MBio 2012; 3:e00025-12 [View Article][PubMed]
    [Google Scholar]
  10. Duhamel M, Edwards EA. Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 2006; 58:538–549 [View Article][PubMed]
    [Google Scholar]
  11. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 2005; 7:1442–1450 [View Article][PubMed]
    [Google Scholar]
  12. Ritalahti KM, Löffler FE. Populations implicated in anaerobic reductive dechlorination of 1,2-dichloropropane in highly enriched bacterial communities. Appl Environ Microbiol 2004; 70:4088–4095 [View Article][PubMed]
    [Google Scholar]
  13. Taş N, van Eekert MH, de Vos WM, Smidt H. The little bacteria that can – diversity, genomics and ecophysiology of 'Dehalococcoides' spp. in contaminated environments. Microb Biotechnol 2010; 3:389–402 [View Article][PubMed]
    [Google Scholar]
  14. Men Y, Lee PK, Harding KC, Alvarez-Cohen L. Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions. Appl Microbiol Biotechnol 2013; 97:6439–6450 [View Article][PubMed]
    [Google Scholar]
  15. Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T. Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 2008; 74:792–801 [View Article][PubMed]
    [Google Scholar]
  16. Zhao L, Ma T, Gao M, Gao P, Cao M et al. Characterization of microbial diversity and community in water flooding oil reservoirs in China. World J Microbiol Biotechnol 2012; 28:3039–3052 [View Article][PubMed]
    [Google Scholar]
  17. Ziv-El M, Delgado AG, Yao Y, Kang DW, Nelson KG et al. Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene. Appl Microbiol Biotechnol 2011; 92:1063–1071 [View Article][PubMed]
    [Google Scholar]
  18. Selesi D, Jehmlich N, von Bergen M, Schmidt F, Rattei T et al. Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 2010; 192:295–306 [View Article][PubMed]
    [Google Scholar]
  19. Widdel F, Kohring G-W, Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 1983; 134:286–294 [CrossRef]
    [Google Scholar]
  20. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 1981; 129:395–400[PubMed] [CrossRef]
    [Google Scholar]
  21. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  22. Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride—methanol. J Lipid Res 1964; 5:600–608[PubMed]
    [Google Scholar]
  23. Pilloni G, von Netzer F, Engel M, Lueders T. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 2011; 78:165–175 [View Article][PubMed]
    [Google Scholar]
  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  26. Leschine SB, Canale-Parola E. Rifampin as a selective agent for isolation of oral spirochetes. J Clin Microbiol 1980; 12:792[PubMed]
    [Google Scholar]
  27. Leschine SB, Canale-Parola E. Rifampin-resistant RNA polymerase in spirochetes. FEMS Microbiol Lett 1986; 35:199–204 [View Article]
    [Google Scholar]
  28. Stanton TB, Canale-Parola E. Enumeration and selective isolation of rumen spirochetes. Appl Environ Microbiol 1979; 38:965–973[PubMed]
    [Google Scholar]
  29. Graber JR, Breznak JA. Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol 2004; 70:1307–1314 [View Article][PubMed]
    [Google Scholar]
  30. Graber JR, Leadbetter JR, Breznak JA. Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 2004; 70:1315–1320 [View Article][PubMed]
    [Google Scholar]
  31. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 1999; 283:686–689 [View Article][PubMed]
    [Google Scholar]
  32. Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T et al. Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 2011; 13:1125–1137 [View Article][PubMed]
    [Google Scholar]
  33. Bergmann FD, Selesi D, Meckenstock RU. Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch Microbiol 2011; 193:241–250 [View Article][PubMed]
    [Google Scholar]
  34. Mouttaki H, Johannes J, Meckenstock RU. Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 2012; 14:2770–2774 [View Article][PubMed]
    [Google Scholar]
  35. Annweiler E, Michaelis W, Meckenstock RU. Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 2002; 68:852–858 [View Article][PubMed]
    [Google Scholar]
  36. Lee SH, Park JH, Kang HJ, Lee YH, Lee TJ et al. Distribution and abundance of spirochaetes in full-scale anaerobic digesters. Bioresour Technol 2013; 145:25–32 [View Article][PubMed]
    [Google Scholar]
  37. Lee SH, Park JH, Kim SH, Yu BJ, Yoon JJ et al. Evidence of syntrophic acetate oxidation by spirochaetes during anaerobic methane production. Bioresour Technol 2015; 190:543–549 [View Article][PubMed]
    [Google Scholar]
  38. Pohlschroeder M, Leschine SB, Canale-Parola E. Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum. Arch Microbiol 1994; 161:17–24 [View Article]
    [Google Scholar]
  39. Dubinina G, Grabovich M, Leshcheva N, Rainey FA, Gavrish E. Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol Microbiol 2011; 61:110–117 [View Article][PubMed]
    [Google Scholar]
  40. Motaleb MA, Corum L, Bono JL, Elias AF, Rosa P et al. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci USA 2000; 97:10899–10904 [View Article][PubMed]
    [Google Scholar]
  41. Heuner K, Grosse K, Schade R, Gobel UB. A flagellar gene cluster from the oral spirochaete Treponema maltophilum. Microbiology 2000; 146:497–507 [View Article][PubMed]
    [Google Scholar]
  42. Abt B, Han C, Scheuner C, Lu M, Lapidus A et al. Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta. Stand Genomic Sci 2012; 6:194–209 [View Article][PubMed]
    [Google Scholar]
  43. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  44. Abt B, Göker M, Scheuner C, Han C, Lu M et al. Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1T), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Treponema. Stand Genomic Sci 2013; 8:88–105 [View Article][PubMed]
    [Google Scholar]
  45. Zuelzer M. Über Spirochaeta plicatilis Ehrenberg und deren Verwandtschaftsbeziehungen. Arch Protistenkunde 1912; 24:1–59
    [Google Scholar]
  46. Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 2000; 66:2743–2747 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001799
Loading
/content/journal/ijsem/10.1099/ijsem.0.001799
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error