1887

Abstract

A slightly beige-white pigmented, Gram-staining-negative, rod-shaped bacterium, strain M1A1, was isolated from seawater samples obtained in Fildes Bay, Antarctica (62°12′ S 58° 57′ W). Phylogenetic analysis based on nearly full-length 16S rRNA gene sequences showed that the isolate shared 98.4 % 16S rRNA gene sequence identity to the type strain of , but less than 97 % 16S rRNA gene sequence similarities to all other species of the genus . DNA–DNA hybridization with DSM 14288 showed low values (21 %, reciprocal 27 %). The main cellular fatty acid of strain M1A1 was summed feature 3 fatty acids (Cω7/C ω8), followed by C. Based on phylogenetic, chemotaxonomic, genomic and phenotypic analyses, we propose a novel species of the genus with the name sp. nov. and the strain M1A1 (=CIP 111183=CCM 8710=LMG 29766) as type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001801
2017-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1306.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001801&mimeType=html&fmt=ahah

References

  1. Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E. Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Arch Microbiol 1998; 169:231–238 [View Article][PubMed]
    [Google Scholar]
  2. Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT. Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 2006; 56:1001–1007 [View Article][PubMed]
    [Google Scholar]
  3. Auman AJ, Breezee JL, Gosink JJ, Schumann P, Barnes CR et al. Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core. Int J Syst Evol Microbiol 2010; 60:84–92 [View Article][PubMed]
    [Google Scholar]
  4. Breezee J, Cady N, Staley JT. Subfreezing growth of the sea ice bacterium "Psychromonas ingrahamii". Microb Ecol 2004; 47:300–304 [View Article][PubMed]
    [Google Scholar]
  5. Brenner DJ, Kreig NR, Staley JT, Garrity GM. (editors) Genus XII. Psychromonas Mountfort, Rainey, Burghardt, Kaspar and Stackebrandt 1998b, 631VP. In Bergey’s Manual of Systematic Bacteriology vol. 2, 2nd ed. New York: Springer; 2005 pp 478–480
    [Google Scholar]
  6. Groudieva T, Grote R, Antranikian G. Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 2003; 53:539–545 [View Article][PubMed]
    [Google Scholar]
  7. Hosoya S, Yasumoto-Hirose M, Adachi K, Katsuta A, Kasai H. Psychromonas heitensis sp. nov., a psychrotolerant bacterium isolated from seawater in Japan. Int J Syst Evol Microbiol 2008; 58:2253–2257 [View Article][PubMed]
    [Google Scholar]
  8. Hosoya S, Jang JH, Yasumoto-Hirose M, Matsuda S, Kasai H. Psychromonas agarivorans sp. nov., a novel agarolytic bacterium. Int J Syst Evol Microbiol 2009; 59:1262–1266 [View Article][PubMed]
    [Google Scholar]
  9. Miyazaki M, Nogi Y, Fujiwara Y, Horikoshi K. Psychromonas japonica sp. nov., Psychromonas aquimarina sp. nov., Psychromonas macrocephali sp. nov. and Psychromonas ossibalaenae sp. nov., psychrotrophic bacteria isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 2008; 58:1709–1714 [View Article][PubMed]
    [Google Scholar]
  10. Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 2002; 52:1527–1532 [View Article][PubMed]
    [Google Scholar]
  11. Nogi Y, Hosoya S, Kato C, Horikoshi K. Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol 2007; 57:1360–1364 [View Article][PubMed]
    [Google Scholar]
  12. Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ et al. Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 2003; 53:527–532 [View Article][PubMed]
    [Google Scholar]
  13. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991
    [Google Scholar]
  14. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981; 148:107–127 [View Article][PubMed]
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  17. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  18. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  19. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. PHYLIP: Phylogeny Inference Package version 3.6 Distributed by the author. Department of Genome Sciences, University of Washington; Seattle, USA: 2005
    [Google Scholar]
  21. Jukes T, Cantor CR. Evolution of protein molecules. In Munro HN. editor Mammalian Protein Metabolism vol. 3 New York: Academic Press; 1969 p 132
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  23. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48:179–186 [View Article][PubMed]
    [Google Scholar]
  24. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [CrossRef]
    [Google Scholar]
  25. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  26. Glaeser SP, Falsen E, Martin K, Kämpfer P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2013; 63:3623–3527 [View Article][PubMed]
    [Google Scholar]
  27. Gerhardt P, Murray RGE, Wood WA, Krieg N. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  28. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article][PubMed]
    [Google Scholar]
  29. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001801
Loading
/content/journal/ijsem/10.1099/ijsem.0.001801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error