1887

Abstract

Strain NP1, a Gram-stain-negative, orange, rod-shaped bacterium was isolated from hexacholorocyclohexane (HCH)-contaminated soil sediment samples collected from Ummari village, Lucknow, Uttar Pradesh, India. The results of 16S rRNA gene sequence analysis indicated that NP1 clustered with members of the genus of the order , family and phylum The 16S rRNA gene sequence similarity with type strains of members of the genus ranged from 98.57 to 93.95 % with JC-130 (98.57 %), X14-1 (97.82 %), YKTF-7 (97.42 %) and W-14 (97.01 %) as the closest neighbours. Cells of NP1 were aerobic, motile and oxidase- and catalase-positive. NP1 was capable of hydrolysis of gelatin, aesculin and starch and reduced nitrates to nitrogen. The major fatty acids of NP1 were summed feature 4 and iso-C. The polar lipid profile of NP1 showed the presence of phosphatidylethanolamine (PE), unknown glycolipids and unknown aminolipids. Menaquinone-7 (MK-7) was the predominant respiratory quinone and homospermidine was found to be the predominant polyamine in NP1. The DNA G+C content of NP1 was 52.1±0.7 mol%. The levels of DNA–DNA relatedness of NP1 to JC-130, X14-1, YKTF-7 and W14 were 44.9±0.6 %, 40.5±0.4 %, 34.4±0.7 % and 33.4±0.5 % respectively. Based on the phenotypic, chemotaxonomic, physiological and biochemical evidence and DNA–DNA hybridization results, it is proposed that NP1 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is NP1 (KCTC 42943=CCM 8697=MCC 2931).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001833
2017-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1400.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001833&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS et al. Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum 'Bacteroidetes', and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 2005; 55:2583–2588 [View Article][PubMed]
    [Google Scholar]
  2. Subhash Y, Tushar L, Sasikala C, Ramana C. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013; 63:4524–4532 [View Article][PubMed]
    [Google Scholar]
  3. Zhang L, Zhang QJ, Luo XS, Tang YL, Dai J et al. Pontibacter korlensis sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2008; 58:1216–1214
    [Google Scholar]
  4. Wang Y, Zhang K, Cai F, Zhang L, Tang Y et al. Pontibacter xinjiangensis sp. nov., in the phylum 'Bacteroidetes', and reclassification of [Effluviibacter] roseus as Pontibacter roseus comb. nov. Int J Syst Evol Microbiol 2010; 60:99–103 [View Article][PubMed]
    [Google Scholar]
  5. Dwivedi V, Niharika N, Lal R. Pontibacter lucknowensis sp. nov., isolated from hexachlorocyclohexane dumpsite. Int J Syst Evol Microbiol 2013; 63:309–313 [View Article][PubMed]
    [Google Scholar]
  6. Xu M, Wang Y, Dai J, Jiang F, Rahman E et al. Pontibacter populi sp. nov., isolated from the soil of a euphrates poplar (Populus euphratica) forest. Int J Syst Evol Microbiol 2012; 62:665–670 [View Article][PubMed]
    [Google Scholar]
  7. Xu L, Zeng XC, Nie Y, Luo X, Zhou E et al. Pontibacter diazotrophicus sp. nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae. PLoS One 2014; 9:e92294 [View Article][PubMed]
    [Google Scholar]
  8. Singh AK, Garg N, Sangwan N, Negi V, Kumar R et al. Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane (HCH) contaminated pond sediment located in the vicinity of a lindane production unit. Int J Syst Evol Microbiol 2013; 63:2829–2834 [CrossRef]
    [Google Scholar]
  9. Singh AK, Garg N, Lata P, Kumar R, Negi V et al. Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2014; 64:254–259 [View Article][PubMed]
    [Google Scholar]
  10. Singh AK, Garg N, Lal R. Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. Int J Syst Evol Microbiol 2015; 65:2248–2254 [View Article][PubMed]
    [Google Scholar]
  11. Kohli P, Nayyar N, Sharma A, Singh AK, Lal R. Pontibacter virosus sp. nov., isolated from a hexachlorocyclohexane-contaminated dumpsite. Int J Syst Evol Microbiol 2016; 66:4395–4400 [View Article][PubMed]
    [Google Scholar]
  12. Mahato NK, Tripathi C, Nayyar N, Singh AK, Lal R. Pontibacter ummariensis sp. nov., isolated from a hexachlorocyclohexane contaminated soil. Int J Syst Evol Microbiol 2016; 66:1080–1087 [CrossRef]
    [Google Scholar]
  13. Nayyar N, Kohli P, Mahato NK, Lal R. Pontibacter mucosus sp. nov., isolated from hexachlorocyclohexane contaminated pond sediment. Int J Syst Evol Micobiol 2016; 66:2234–2240 [CrossRef]
    [Google Scholar]
  14. Park S, Park JM, Lee KH, Yoon JH. Pontibacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:4172–4178 [View Article][PubMed]
    [Google Scholar]
  15. Kumar M, Verma M, Lal R. Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 2008; 58:861–865 [View Article][PubMed]
    [Google Scholar]
  16. Singh A, Lal R. A novel hexachlorocyclohexane degrading bacterium Sphingobium ummariense sp. nov., isolated from HCH contaminated soil. Int J Syst Evol Microbiol 2009; 59:162–166 [CrossRef]
    [Google Scholar]
  17. Verma M, Kumar M, Dadhwal M, Kaur J, Lal R. Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2009; 59:795–799 [View Article][PubMed]
    [Google Scholar]
  18. Sharma P, Verma M, Bala K, Nigam A, Lal R. Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2010; 60:780–784 [View Article][PubMed]
    [Google Scholar]
  19. Malhotra J, Anand S, Jindal S, Rajagopal R, Lal R. Acinetobacter indicus sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2012; 62:2883–2890 [View Article][PubMed]
    [Google Scholar]
  20. Kumar R, Dwivedi V, Nayyar N, Verma H, Singh AK et al. Parapedobacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2015; 65:129–134 [View Article][PubMed]
    [Google Scholar]
  21. Kumari R, Singh P, Schumann P, Lal R. Tessaracoccus flavus sp. nov., isolated from the drainage system of a lindane-producing factory. Int J Syst Evol Microbiol 2016; 66:1862–1868 [View Article][PubMed]
    [Google Scholar]
  22. Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N et al. Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 2012; 7:e46219 [View Article][PubMed]
    [Google Scholar]
  23. Sangwan N, Verma H, Kumar R, Negi V, Lax S et al. Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. Isme J 2014; 8:398–408 [View Article][PubMed]
    [Google Scholar]
  24. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407–438[PubMed]
    [Google Scholar]
  25. Tindall BJ, Rosselló-Mora R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Micobiol 2010; 60:249–266 [CrossRef]
    [Google Scholar]
  26. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  27. Lane DJ. 16S/23S sequencing. In Stakebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  28. Eden PA, Schmidt TM, Blakemore RP, Pace NR. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 1991; 41:324–325 [View Article][PubMed]
    [Google Scholar]
  29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  30. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  31. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  33. Jukes T, Cantor CR. Evolution of protein molecules. In Munro HN. editor Mammalian Protein Metabolism vol. 3 New York: Academic Press; 1969 pp. 21–132 [CrossRef]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  35. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  36. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [CrossRef]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  38. Moreira AP, Pereira N, Thompson FL. Usefulness of a real-time PCR platform for G+C content and DNA–DNA hybridization estimations in vibrios. Int J Syst Evol Microbiol 2011; 61:2379–2383 [View Article][PubMed]
    [Google Scholar]
  39. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  40. Loveland-Curtze J, Miteva VI, Brenchley JE. Evaluation of a new fluorimetric DNA–DNA hybridization method. Can J Microbiol 2011; 57:250–255 [View Article][PubMed]
    [Google Scholar]
  41. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142[PubMed] [CrossRef]
    [Google Scholar]
  42. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  43. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994; 44:846–849 [CrossRef]
    [Google Scholar]
  44. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  45. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  46. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496[PubMed]
    [Google Scholar]
  47. Mccarthy AJ, Cross T. A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 1984; 130:5–25 [View Article]
    [Google Scholar]
  48. Jones MP, Mccarthy AJ, Cross T. Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 1979; 115:343–354 [View Article][PubMed]
    [Google Scholar]
  49. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  50. Gordon RE, Barnett DA, Handerran JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica and the Nocardin strain. Int J Syst Evol Microbiol 1974; 24:54–63 [View Article]
    [Google Scholar]
  51. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  52. Gupta SK, Lal D, Lal R. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2009; 59:156–161 [View Article][PubMed]
    [Google Scholar]
  53. Gunstone FD, Jacobsberg FR. Fatty acids, part 35: the preparation and properties of a complete series of methyl epoxyoctadecanoates. Chem Phys Lipids 1972; 9:26–64 [CrossRef]
    [Google Scholar]
  54. Consden R, Gordon AH. Effect of salt on partition chromatograms. Nature 1948; 162:180–181[PubMed] [CrossRef]
    [Google Scholar]
  55. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and Corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  56. Collins MD, Shah HN, Minnikin DE. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 1980; 48:277–282 [View Article][PubMed]
    [Google Scholar]
  57. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  58. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  59. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotics resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001833
Loading
/content/journal/ijsem/10.1099/ijsem.0.001833
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error