1887

Abstract

() species are small sulfur-oxidizing chemolithoautotrophic members of the . Whilst the type species and closely related exhibit canonical spiral morphology under sub-optimal growth conditions, most species are vibrios or rods. The 16S rRNA gene diversity is vast, with identities as low as 91.6 % for versus , for example. was examined with closely related genera and and, to rationalize organisms on the basis of the 16S rRNA gene phylogeny, physiology and morphology, we reclassify , , and to comb. nov., corrig. comb. nov., corrig. comb. nov. and corrig. comb. nov. We reclassify , , and to () gen. nov., as comb. nov., comb. nov., comb. nov. and comb. nov. – the type species of is . We demonstrate that species fall within the genus , thus reclassifying them as corrig. comb. nov., corrig. comb. nov., corrig. comb. nov. and corrig. comb. nov. We provide emended descriptions of the genera and and of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001855
2017-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1140.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001855&mimeType=html&fmt=ahah

References

  1. Kuenen JG, Veldkamp H. Thiomicrospira pelophila, gen. n., sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leeuwenhoek 1972; 38:241–256 [View Article][PubMed]
    [Google Scholar]
  2. Nishihara H, Igarashi Y, Kodama T. Hydrogenovibrio marinus gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 1991; 41:130–133 [View Article]
    [Google Scholar]
  3. Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE et al. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 2001; 51:565–580 [View Article][PubMed]
    [Google Scholar]
  4. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012; 158:1005–1015 [View Article][PubMed]
    [Google Scholar]
  5. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  6. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  7. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526[PubMed]
    [Google Scholar]
  8. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article][PubMed]
    [Google Scholar]
  9. Badger MR, Bek EJ. Multiple rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 2008; 59:1525–1541 [View Article][PubMed]
    [Google Scholar]
  10. Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Phil Trans Roy Soc B 2008; 363:2629–2640 [View Article]
    [Google Scholar]
  11. Tourova TP, Spiridonova EM, Berg IA, Kuznetsov BB, Sorokin DY. Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in obligately chemolithoautotrophic sulfur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology 2006; 152:2159–2169 [View Article][PubMed]
    [Google Scholar]
  12. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
  13. Fournier PE, Suhre K, Fournous G, Raoult D. Estimation of prokaryote genomic DNA G+C content by sequencing universally conserved genes. Int J Syst Evol Microbiol 2006; 56:1025–1029 [View Article][PubMed]
    [Google Scholar]
  14. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:e00927-14 [View Article][PubMed]
    [Google Scholar]
  15. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  16. Brinkhoff T, Kuever J, Muyzer G, Jannasch HW. Genus VI. Thiomicrospira Kuenen and Veldkamp 1972, 253AL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria) New York: Springer; 2005 pp. 193–199
    [Google Scholar]
  17. Wood AP, Kelly DP. Reclassification of Thiobacillus thyasiris as Thiomicrospira thyasirae comb. nov., an organism exhibiting pleomorphism in response to environmental conditions. Arch Microbiol 1993; 159:45–47 [View Article]
    [Google Scholar]
  18. Wood AP, Kelly DP. Isolation and physiological characterisation of Thiobacillus thyasiris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasira fexuosa. Arch Microbiol 1989; 152:160–166 [View Article]
    [Google Scholar]
  19. Lanaras T, Cook CM, Wood AP, Kelly DP, Codd GA. Purification of ribulose 1,5-bisphosphate carboxylase/oxygenase and of carboxysomes from Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa (Montagu). Arch Microbiol 1991; 156:338–343 [View Article]
    [Google Scholar]
  20. Kuenen JG, Robertson LA. Genus Thiomicrospira. Kuenen and Veldkamp 1972, 253AL. In Staley JT, Bryant MP, Pfennig N, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 3 Baltimore: Williams & Wilkins; 1989 pp. 1858–1861
    [Google Scholar]
  21. Menning KJ. Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is ATP-sensitive and enhances RubisCO-mediated carbon fixation M.S. Thesis, University of South Florida 2012
    [Google Scholar]
  22. Wood AP, Kelly DP. Autotrophic growth of Thiobacillus A2 on methanol. FEMS Microbiol Lett 1982; 15:229–233 [View Article]
    [Google Scholar]
  23. Wood AP, Kelly DP. Potential for methylotrophic autotrophy in Thiobacillus versutus (Thiobacillus sp. Strain A2). In Crawford RL, Hanson RS. (editors) Microbial Growth on C1 Compounds, Proceedings of the 4th International Symposium Washington, DC: American Society for Microbiology; 1984 pp. 324–329
    [Google Scholar]
  24. Fullarton JG, Wood P, Sargent JR. Fatty acid composition of lipids from sulphuroxidizing and methylotrophic bacteria from thyasirid and lucinid bivalves. J Mar Biol Assoc UK 1995; 75:445–454 [View Article]
    [Google Scholar]
  25. Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH et al. Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, mariana arc, western pacific. Int J Syst Evol Microbiol 2004; 54:2325–2333 [View Article][PubMed]
    [Google Scholar]
  26. Mackintosh ME. Nitrogen fixation in Thiobacillus ferrooxidans species. J Gen Microbiol 1971; 66:i–ii [CrossRef]
    [Google Scholar]
  27. Mackintosh ME. Nitrogen fixation by Thiobacillus ferrooxidans. J Gen Microbiol 1978; 105:215–218 [View Article]
    [Google Scholar]
  28. Brinkhoff T, Sievert SM, Kuever J, Muyzer G. Distribution and diversity of sulfur-oxidizing Thiomicrospira spp. at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Appl Environ Microbiol 1999; 65:3843–3849[PubMed]
    [Google Scholar]
  29. Brinkhoff T, Muyzer G, Wirsen CO, Kuever J. Thiomicrospira kuenenii sp. nov. and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 1999; 49:385–392 [View Article][PubMed]
    [Google Scholar]
  30. Brinkhoff T, Muyzer G, Wirsen CO, Kuever J. Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfuroxidizing bacterium isolated from a Thioploca mat. Int J Syst Bacteriol 1999; 49:875–879 [View Article][PubMed]
    [Google Scholar]
  31. Knittel K, Kuever J, Meyerdierks A, Meinke R, Amann R et al. Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol 2005; 55:781–786 [View Article][PubMed]
    [Google Scholar]
  32. Sorokin DY, Tourova TP, Kolganova TV, Spiridonova EM, Berg IA et al. Thiomicrospira halophila sp. nov., a moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 2006; 56:2375–2380 [View Article][PubMed]
    [Google Scholar]
  33. Jannasch HW, Wirsen CO, Nelson DC, Robertson LA. Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 1985; 35:422–424 [View Article]
    [Google Scholar]
  34. Sorokin DY, Gorlenko VM, Tourova TP, Tsapin AI, Nealson KH et al. Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio janaschiijannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline mono lake (California). Int J Syst Evol Microbiol 2002; 52:913–920 [View Article][PubMed]
    [Google Scholar]
  35. Sorokin DY, Foti M, Pinkart HC, Muyzer G. Sulfur-oxidizing bacteria in soap lake (Washington state), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Appl Environ Microbiol 2007; 73:451–455 [View Article][PubMed]
    [Google Scholar]
  36. Distel DL, Wood AP. Characterization of the gill symbiont of Thyasira flexuosa (Thyasiridae: bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J Bacteriol 1992; 174:6317–6320 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001855
Loading
/content/journal/ijsem/10.1099/ijsem.0.001855
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error