1887

Abstract

As part of a study to investigate the microbial diversity in the intestine of , we isolated strain MRM1 from the midgut. MRM1 was a Gram-stain-negative, strictly aerobic, non-motile, non-spore forming and rod-shaped bacteria. Creamy beige-coloured colonies were circular with entire margins in Lactobacilli MRS agar. The strain grew at 25–37 °C (optimum, 30–37 °C) and at a pH range of 4.0 to 9.0 (optimum pH, 7.0–8.5). The strain tolerated 0–1 % (w/v) NaCl (optimal growth occurred in the absence of NaCl). On the basis of the results of a phylogenetic analysis based on the 16S rRNA gene sequences, we determined that MRM1 represents a member of the genus with the highest sequence similarity to LMG 28161 (98.8 %). The major quinone was Q10, and dominant fatty acids (>10 %) were Ccyclo ω8 (33.6 %), C (22.2 %), Cω7 (15.9 %) and C (12.5 %). The polar lipid profile of MRM1 included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified phospholipid and four unidentified lipids. The DNA G+C content of MRM1 was 59.5 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, MRM1 represents a novel species of the genus , for which the name sp. nov. is proposed with the type strain MRM1 (=KCTC 52452=JCM 31623).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001921
2017-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2184.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001921&mimeType=html&fmt=ahah

References

  1. Li L, Illeghems K, van Kerrebroeck S, Borremans W, Cleenwerck I et al. Whole-genome sequence analysis of Bombella intestini LMG 28161T, a novel acetic acid bacterium isolated from the crop of a red-tailed bumble bee, Bombus lapidarius . PLoS One 2016; 11:e0165611 [View Article][PubMed]
    [Google Scholar]
  2. Li L, Praet J, Borremans W, Nunes OC, Manaia CM et al. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65:267–273 [View Article][PubMed]
    [Google Scholar]
  3. Corby-Harris V, Snyder LA, Schwan MR, Maes P, Mcfrederick QS et al. Origin and effect of alpha 2.2 Acetobacteraceae in honey bee larvae and description of P arasaccharibacter apium gen. nov., sp. nov. Appl Environ Microbiol 2014; 80:7460–7472 [View Article][PubMed]
    [Google Scholar]
  4. Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 2015; 10:e0123911 [View Article][PubMed]
    [Google Scholar]
  5. Vojvodic S, Rehan SM, Anderson KE. Microbial gut diversity of Africanized and European honey bee larval instars. PLoS One 2013; 8:e72106 [View Article][PubMed]
    [Google Scholar]
  6. Corby-Harris V, Snyder L, Meador CA, Naldo R, Mott B et al. Parasaccharibacter a pium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema . J Econ Entomol 2016; 109:537–543 [View Article][PubMed]
    [Google Scholar]
  7. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold spring harbor, NY: Cold spring harbor laboratory; 1989
    [Google Scholar]
  8. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  9. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [View Article]
    [Google Scholar]
  14. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773 [View Article][PubMed]
    [Google Scholar]
  15. Kersters K, Lisdiyanti P, Komagata K, Swings J. The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia . In: The Prokaryotes Springer; 2006 pp. 163–200 [CrossRef]
    [Google Scholar]
  16. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  17. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  18. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77:194 [View Article][PubMed]
    [Google Scholar]
  19. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575[PubMed]
    [Google Scholar]
  20. Iizuka H, Komagata K. An attempt at grouping of the genus Pseudomonas . J Gen Appl Microbiol 1963; 9:73–82 [View Article]
    [Google Scholar]
  21. Shimwell JL, Carr JG, Rhodes ME. Differentiation of Acetomonas and Pseudomonas . J Gen Microbiol 1960; 23:283–286 [View Article]
    [Google Scholar]
  22. Aydin YA, Aksoy ND. Isolation of cellulose producing bacteria from wastes of vinegar fermentation. In: Proceedings of the World Congress on Engineering and Computer Science 2009 pp. 20–22
    [Google Scholar]
  23. Lisdiyanti P, Kawasaki H, Widyastuti Y, Saono S, Seki T et al. Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-proteobacteria. Int J Syst Evol Microbiol 2002; 52:813–818 [View Article][PubMed]
    [Google Scholar]
  24. Shimwell JL. The true significance of Hoyer's medium in the differentiation of Acetobacter species. J Inst Brew 1957; 63:44–45 [View Article]
    [Google Scholar]
  25. Gosselé F, Swings J, de Ley J, A Rapid DLJ. A rapid, simple and simultaneous detection of 2-keto-, 5-keto-and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralbl Bakteriol 1980; 1:178–181 [View Article]
    [Google Scholar]
  26. Asai T, Iizuka H, Komagata K. The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 1964; 10:95–126 [View Article]
    [Google Scholar]
  27. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  28. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981; 51:129–134 [View Article][PubMed]
    [Google Scholar]
  29. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000; 50:1297–1303 [View Article][PubMed]
    [Google Scholar]
  30. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  31. MIDI Sherlock Microbial Identification System. Newark, DE: MIDI Inc.; 2012 pp. 1–18
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001921
Loading
/content/journal/ijsem/10.1099/ijsem.0.001921
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error