1887

Abstract

A Gram-staining-negative, aerobic, rod-shaped bacterial strain, designated LPB0090, was isolated from the Pacific oyster, , collected from the Yeongheung Island, Korea (37° 15′ 16.1″ N; 126° 29′ 46.5″ E). The complete genome sequence of LPB0090 (accession number CP017689) was 3 861 670 bp long with a DNA G+C content of 38.8 mol%. The genome included 3245 protein-coding genes and six copies of rRNA operons. On the basis of the results of 16S rRNA gene sequence analysis, LPB0090 was found to form an independent phyletic line within the genus , with 94.7–96.0 % sequence similarities to the previously known species of the genus. The isoprenoid quinone (Q-8) and major fatty acids (C, C ω8, and C ω7 and/or C ω6) of the isolate were similar to those of the other members of the genus . A number of phenotypic features, however, distinguished LPB0090 from its closest neighbour as well as other species of the genus . On the basis of the phylogenetic, genomic and phenotypic data presented in this study, the strain was classified as representing a novel species of the genus . Therefore, the name sp. nov. is proposed for the isolate. The type strain is LPB0090 (=KACC 18695=JCM 31189).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001923
2017-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2195.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001923&mimeType=html&fmt=ahah

References

  1. Zhang Y, Tang K, Shi X, Zhang XH. Description of Thalassotalea piscium gen. nov., sp. nov., isolated from flounder (Paralichthys olivaceus), reclassification of four species of the genus Thalassomonas as members of the genus Thalassotalea gen. nov. and emended description of the genus Thalassomonas . Int J Syst Evol Microbiol 2014; 64:1223–1228 [View Article][PubMed]
    [Google Scholar]
  2. Park S, Choi WC, Oh TK, Yoon JH. Thalassomonas agariperforans sp. nov., an agarolytic bacterium isolated from marine sand. Int J Syst Evol Microbiol 2011; 61:2573–2576 [View Article][PubMed]
    [Google Scholar]
  3. Jean WD, Shieh WY, Liu TY. Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas . Int J Syst Evol Microbiol 2006; 56:1245–1250 [View Article][PubMed]
    [Google Scholar]
  4. Sheu SY, Liu LP, Tang SL, Chen WM. Thalassotalea euphylliae sp. nov., isolated from the torch coral Euphyllia glabrescens . Int J Syst Evol Microbiol 2016; 66:5039–5045 [View Article][PubMed]
    [Google Scholar]
  5. Hou TT, Liu Y, Zhong ZP, Liu HC, Liu ZP. Thalassotalea marina sp. nov., isolated from a marine recirculating aquaculture system, reclassification of Thalassomonas eurytherma as Thalassotalea eurytherma comb. nov. and emended description of the genus Thalassotalea . Int J Syst Evol Microbiol 2015; 65:4710–4715 [View Article][PubMed]
    [Google Scholar]
  6. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014; 64:2079–2083 [View Article][PubMed]
    [Google Scholar]
  7. Jung YT, Park S, Yoon JH. Thalassomonas fusca sp. nov., a novel gammaproteobacterium isolated from tidal flat sediment. Antonie van Leeuwenhoek 2014; 105:81–87 [View Article][PubMed]
    [Google Scholar]
  8. Park S, Jung YT, Kang CH, Park JM, Yoon JH. Thalassotalea ponticola sp. nov., isolated from seawater, reclassification of Thalassomonas fusca as Thalassotalea fusca comb. nov. and emended description of the genus Thalassotalea . Int J Syst Evol Microbiol 2014; 64:3676–3682 [View Article][PubMed]
    [Google Scholar]
  9. Yi H, Bae KS, Chun J. Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54:377–380 [View Article][PubMed]
    [Google Scholar]
  10. Thompson FL, Barash Y, Sawabe T, Sharon G, Swings J et al. Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol 2006; 56:365–368 [View Article][PubMed]
    [Google Scholar]
  11. Chen WM, Liu LP, Chen CA, Wang JT, Sheu SY. Thalassotalea montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata . Int J Syst Evol Microbiol 2016; 66:4077–4084 [View Article][PubMed]
    [Google Scholar]
  12. Shin SK, Kim E, Choi S, Yi H. Cochleicola gelatinilyticus gen. nov., sp. nov., Isolated from a marine gastropod, Reichia luteostoma . J Microbiol Biotechnol 2016; 26:1439–1445 [View Article][PubMed]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Jeon YS, Lee K, Park SC, Kim BS, Cho YJ et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 2014; 64:689–691 [View Article][PubMed]
    [Google Scholar]
  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  16. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article][PubMed]
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  18. Collins MD. Isoprenoid quinones. In Goodfellow M, O'Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons Ltd; 1994 pp. 265–309
    [Google Scholar]
  19. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001923
Loading
/content/journal/ijsem/10.1099/ijsem.0.001923
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error