1887

Abstract

A bacterial strain, designated T16E-198, was isolated from the rhizosphere of tomato plant collected from a farm on Buyeo-gun, Chungcheongnam-do, South Korea. The strain was aerobic, Gram-stain-negative, rod-shaped, non-flagellated and yellow-pigmented. Strain T16E-198 was mesophilic, catalase- and oxidase-positive and with flexirubin-type pigments. A phylogenetic tree based on 16S rRNA gene sequences showed that strain T16E-198 formed a lineage with 5GHs7-2, sharing highest sequence similarity of 98.4 % with it and less than 93 % with all the other validly published species. The major fatty acids were iso-C, iso-C 3-OH and iso-C G. The predominant menaquinone was MK-7. The polar lipids were phosphatidylethanolamine, one unknown aminophospholipid, five unknown aminolipids and five unknown lipids. The DNA G+C content was 41.2 mol%. On the basis of the phenotypic, phylogenetic and chemotaxonomic data presented, strain T16E-198 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is T16E-198 (=KACC 18786=JCM 31601).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001945
2017-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2279.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001945&mimeType=html&fmt=ahah

References

  1. Kim SJ, Park JH, Lim JM, Ahn JH, Anandham R et al. Parafilimonas terrae gen. nov., sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2014; 64:3040–3045 [View Article][PubMed]
    [Google Scholar]
  2. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Para segetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011; 61:518–523 [View Article][PubMed]
    [Google Scholar]
  3. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  4. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  5. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  6. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  8. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  11. Tittsler RP, Sandholzer LA. The use of Semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580[PubMed]
    [Google Scholar]
  12. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  13. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 137–154
    [Google Scholar]
  14. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  15. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  16. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  17. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773 [View Article][PubMed]
    [Google Scholar]
  18. Seldin L, Dubnau D. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 1985; 35:151–154 [View Article]
    [Google Scholar]
  19. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001945
Loading
/content/journal/ijsem/10.1099/ijsem.0.001945
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error