1887

Abstract

A Gram-stain-positive, aerobic, motile, endospore-forming bacterium, designated strain J15A17, was isolated from sediment of the South China Sea. The strain was oxidase-positive and catalase-negative. Optimal growth occurred at 33 °C, pH 7.5 and in the presence of 3 % (w/v) NaCl. On the basis of 16S rRNA gene sequence analysis, the strain showed closest similarity (92.8 %) to strain CAU 9324. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate forms a separate branch within the family , with the genus as the most closely related genus. The DNA G+C content of strain J15A17 was 37.4 mol%. The strain contained MK-7 as the sole respiratory quinone; anteiso-C and iso-C were the major cellular fatty acids; and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid and four unidentified phospholipids. The strain displayed the peptidoglycan type A4α -Lys–-Asp in the cell wall. Phylogenetic, physiological, biochemical and morphological differences between strain J15A17 and its closest relatives in the genera , and suggest that strain J15A17 (=KCTC 33759=MCCC 1H00137) represents the type strain of a novel species in a new genus within the family , gen. nov. sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002006
2017-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2672.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002006&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (ash, farrow, wallbanks and collins) using a PCR probe test. proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260[PubMed] [CrossRef]
    [Google Scholar]
  2. De Vos P, Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. New York: Springer-Verlag; 2009 pp. 269
    [Google Scholar]
  3. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article][PubMed]
    [Google Scholar]
  4. Shida O, Takagi H, Kadowaki K, Komagata K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 1996; 46:939–946 [View Article][PubMed]
    [Google Scholar]
  5. Zaitsev GM, Tsitko IV, Rainey FA, Trotsenko YA, Uotila JS et al. New aerobic ammonium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov. Int J Syst Bacteriol 1998; 48 Pt 1:151–163 [View Article][PubMed]
    [Google Scholar]
  6. Touzel JP, O'Donohue M, Debeire P, Samain E, Breton C. Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 2000; 50 Pt 1:315–320 [View Article][PubMed]
    [Google Scholar]
  7. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
  8. Rivas R, García-Fraile P, Zurdo-Piñeiro JL, Mateos PF, Martínez-Molina E et al. Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. Int J Syst Evol Microbiol 2008; 58:1850–1854 [View Article][PubMed]
    [Google Scholar]
  9. Saha P, Krishnamurthi S, Bhattacharya A, Sharma R, Chakrabarti T. Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2010; 60:422–428 [View Article][PubMed]
    [Google Scholar]
  10. Sakai M, Deguchi D, Hosoda A, Kawauchi T, Ikenaga M. Ammoniibacillus agariperforans gen. nov., sp. nov., a thermophilic, agar-degrading bacterium isolated from compost. Int J Syst Evol Microbiol 2015; 65:570–577 [View Article][PubMed]
    [Google Scholar]
  11. Guo LY, Xia J, Ling SK, Chen GJ, Du ZJ et al. Marinicrinis sediminis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016; 66:3725 [View Article][PubMed]
    [Google Scholar]
  12. Flores-Félix JD, Carro L, Ramírez-Bahena MH, Tejedor C, Igual JM et al. Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol 2014; 64:83–87 [View Article][PubMed]
    [Google Scholar]
  13. Atlas RM. Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  14. Smibert RM, Krieg NR. Phenotypic characteristics. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Biology. Washington, DC: American Society for Microbiology 1994 pp. 607–654
    [Google Scholar]
  15. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  16. Jorgensen JH, Turnidge JD, Washington JA. Antibacterial susceptibility tests: dilution and disk diffusion methods. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH et al. (editors) Manual of Clinical Microbiology. Washington, DC: American Society for Microbiology 1999 pp. 1526–1543
    [Google Scholar]
  17. Lane DJ. 16S/23S rRNA sequencing. In Goodfellow M, Stackebrandt E. (editors) Nucleic Acid Techniques in Bacterial Systematics. New York: Wiley 1991 pp. 115–147
    [Google Scholar]
  18. Chun J, Lee JH, Jung Y, Kim M, Kim S et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:405–425[PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  24. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  27. Traiwan J, Park MH, Kim W. Paenibacillus puldeungensis sp. nov., isolated from a grassy sandbank. Int J Syst Evol Microbiol 2011; 61:670–673 [View Article][PubMed]
    [Google Scholar]
  28. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  29. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 2006; 33:152–155
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  33. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  34. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 1990; 101:1–6
    [Google Scholar]
  35. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  36. Lee KC, Kim KK, Eom MK, Kim MJ, Lee JS. Fontibacillus panacisegetis sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011; 61:369–374 [View Article][PubMed]
    [Google Scholar]
  37. Ramírez-Bahena MH, Flores-Félix JD, Cuesta MJ, Tejedor Gil C, Palomo JL et al. Fontibacillus solani sp. nov. isolated from potato (Solanum tuberosum L.) root. Antonie van Leeuwenhoek 2015; 107:1315–1321 [View Article][PubMed]
    [Google Scholar]
  38. Cai F, Wang Y, Qi H, Dai J, Yu B et al. Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 2010; 60:1605–1608 [View Article][PubMed]
    [Google Scholar]
  39. Kim SJ, Weon HY, Kim YS, Anandham R, Jeon YA et al. Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 2010; 60:526–530 [View Article][PubMed]
    [Google Scholar]
  40. Yoon JH, Oh HM, Yoon BD, Kang KH, Park YH. Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 2003; 53:295–301 [View Article][PubMed]
    [Google Scholar]
  41. Huang Z, Yu YJ, Bao YY, Xia L, Sheng XF et al. Cohnella nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64:3320–3324 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002006
Loading
/content/journal/ijsem/10.1099/ijsem.0.002006
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error