1887

Abstract

A novel Gram-staining-negative, oval-shaped (0.4–0.6×0.8–1.0 µm), non-motile strain without flagella, designated B7, was isolated from deep seawater in the South China Sea. Strain B7 was able to grow at 25–40 °C (optimum 35 °C), at pH 5.5–9.0 (optimum pH 7.0) and with 0–8 % (w/v) NaCl (optimum 3 %). Chemotaxonomic analysis showed that the predominant isoprenoid quinone was Q-10 and the dominant fatty acids were C cyclo 8 and summed feature 8 (C 7/C 6). The polar lipids of strain B7 were diphosphatidyglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unknown aminophospholipid, one unknown glycolipid and three unknown lipids. The DNA G+C content of the genomic DNA was 65.1 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain B7 belongs to the genus with similarities ranging from 96.2 to 97.5 %. Phylogenetic analyses of housekeeping genes , and indicated that strain B7 represented a distinct evolutionary lineage with the genus . OrthoANI values between strain B7 and related strains of the genus (<80 %) were lower than the threshold value of 95 % ANI relatedness for species demarcation. Therefore, strain B7 is concluded to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is B7 (=KCTC 42783=MCCC 1K02305).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002009
2017-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2739.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002009&mimeType=html&fmt=ahah

References

  1. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 1997; 47:895–898 [View Article]
    [Google Scholar]
  2. Jarvis BDW, Pankhurst CE, Patel JJ. Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 1982; 32:378–380 [View Article]
    [Google Scholar]
  3. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  4. De Meyer SE, Tan HW, Heenan PB, Andrews M, Willems A. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 2015; 65:3419–3426 [View Article][PubMed]
    [Google Scholar]
  5. Ramírez-Bahena MH, Hernández M, Peix A, Velázquez E, León-Barrios M. Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst Appl Microbiol 2012; 35:334–341 [View Article][PubMed]
    [Google Scholar]
  6. Zhao CT, Wang ET, Zhang YM, Chen WF, Sui XH et al. Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. Int J Syst Evol Microbiol 2012; 62:2180–2186 [View Article][PubMed]
    [Google Scholar]
  7. Yuan CG, Jiang Z, Xiao M, Zhou EM, Kim CJ et al. Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2016; 66:4797–4802 [View Article][PubMed]
    [Google Scholar]
  8. Sun C, Wang RJ, Su Y, Fu GY, Zhao Z et al. Hyphobacterium vulgare gen. nov., sp. nov., a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1169–1176 [View Article][PubMed]
    [Google Scholar]
  9. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  10. Vincent J. The cultivation, isolation and maintenance of rhizobia. A Manual for the Practical Study of the Root-Nodule Bacteria Oxford: Blackwell Scientific; 1970 pp. 1–13
    [Google Scholar]
  11. Sun C, Pan J, Zhang XQ, Su Y, Wu M. Pseudoroseovarius zhejiangensis gen. nov., sp. nov., a novel alpha-proteobacterium isolated from the chemical wastewater, and reclassification of Roseovarius crassostreae as Pseudoroseovarius crassostreae comb. nov., Roseovarius sediminilitoris as Pseudoroseovarius sediminilitoris comb. nov. and Roseovarius halocynthiae as Pseudoroseovarius halocynthiae comb. nov. Antonie van Leeuwenhoek 2015; 108:291–299 [View Article][PubMed]
    [Google Scholar]
  12. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014; 64:2079–2083 [View Article][PubMed]
    [Google Scholar]
  13. Zhang XQ, Sun C, Wang CS, Zhang X, Zhou X et al. Sinimarinibacterium flocculans gen. nov., sp. nov., a gammaproteobacterium from offshore surface seawater. Int J Syst Evol Microbiol 2015; 65:3541–3546 [View Article][PubMed]
    [Google Scholar]
  14. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  15. Zhu X, Jia X, Zhang X, Wu Y, Chen Z et al. Modern Experimental Technique of Microbiology Hangzhou: Zhejiang University Press (English translation); 2011
    [Google Scholar]
  16. Lányí B. Classical and rapid identification methods for medically important Bacteria. Methods Microbiol 1988; 19:1–67 [CrossRef]
    [Google Scholar]
  17. Xu L, Wu YH, Jian SL, Wang CS, Wu M et al. Pseudohongiella nitratireducens sp. nov., isolated from seawater, and emended description of the genus Pseudohongiella. Int J Syst Evol Microbiol 2016; 66: [View Article][PubMed]
    [Google Scholar]
  18. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  19. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  20. Fang MX, Zhang WW, Zhang YZ, Tan HQ, Zhang XQ et al. Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol 2012; 62:3018–3023 [View Article][PubMed]
    [Google Scholar]
  21. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207 [CrossRef]
    [Google Scholar]
  22. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007 pp. 330–393
    [Google Scholar]
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  27. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  29. Clarke JD. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc 2009; 2009:pdb.prot5177 [View Article][PubMed]
    [Google Scholar]
  30. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  31. Lee I, Kim YO, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2015; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  32. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1 [View Article][PubMed]
    [Google Scholar]
  33. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  34. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  35. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  38. Choma A, Komaniecka I. Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. Syst Appl Microbiol 2002; 25:326–331 [View Article][PubMed]
    [Google Scholar]
  39. Nguyen TM, Pham VH, Kim J. Mesorhizobium soli sp. nov., a novel species isolated from the rhizosphere of Robinia pseudoacacia L. in South Korea by using a modified culture method. Antonie van Leeuwenhoek 2015; 108:301–310 [View Article][PubMed]
    [Google Scholar]
  40. Chen WX, Li GS, Qi YL, Wang ET, Yuan HL et al. Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 1991; 41:275–280 [View Article]
    [Google Scholar]
  41. Ghosh W, Roy P. Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 2006; 56:91–97 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002009
Loading
/content/journal/ijsem/10.1099/ijsem.0.002009
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error