1887

Abstract

A Gram-negative, motile, aerobic and coccoid rod-shaped bacterium, designated strain 2T4P-2-4, was isolated from a piece of surface-sterilized bark of collected from Cotai Ecological Zones in Macao, China, and tested by a polyphasic approach to clarify its taxonomic position. Strain 2T4P-2-4 grew optimally without NaCl at 28–30 °C, pH 7.0–8.0. The 16S rRNA gene sequence of strain 2T4P-2-4 had the highest similarity (96.2 %) to CC-CFT034. Phylogenetic analysis showed that the strain grouped with species of the genus The predominant quinone system of strain 2T4P-2-4 was ubiquinone 10 (Q-10). The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, sulfoquinovosyldiacylglycerol, phosphatidylmethylethanolamine, two unidentified amino lipids, an unidentified aminophospholipid and five unidentified lipids. The predominant cellular fatty acid was Cω7 (61.2 %). The DNA G+C content of strain 2T4P-2-4 was 69.8 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic features, strain 2T4P-2-4 is a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain of sp. nov. is 2T4P-2-4 (=KCTC 52217=CGMCC 1.15367).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002046
2017-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2934.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002046&mimeType=html&fmt=ahah

References

  1. Kuykendall LD. Order VI. Rhizobiales Ord. Nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 New York: Springer; 2005 pp. 324
    [Google Scholar]
  2. Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on caribbean scleractinian corals. Int J Syst Evol Microbiol 2003; 53:1115–1122 [View Article][PubMed]
    [Google Scholar]
  3. Cho JC, Giovannoni SJ. Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order "Rhizobiales". Int J Syst Evol Microbiol 2003; 53:1853–1859 [View Article][PubMed]
    [Google Scholar]
  4. Rivas R, Sánchez-Márquez S, Mateos PF, Martínez-Molina E, Velázquez E et al. Martelella mediterranea gen. nov., sp. nov., a novel alpha-proteobacterium isolated from a subterranean saline lake. Int J Syst Evol Microbiol 2005; 55:955–959 [View Article][PubMed]
    [Google Scholar]
  5. Rathsack K, Reitner J, Stackebrandt E, Tindall BJ. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 2011; 61:2722–2728 [View Article][PubMed]
    [Google Scholar]
  6. Liang J, Liu J, Zhang XH. Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int J Syst Evol Microbiol 2015; 65:1127–1132 [View Article][PubMed]
    [Google Scholar]
  7. Jurado V, Gonzalez JM, Laiz L, Saiz-Jimenez C. Aurantimonas altamirensis sp. nov., a member of the order rhizobiales isolated from altamira cave. Int J Syst Evol Microbiol 2006; 56:2583–2585 [View Article][PubMed]
    [Google Scholar]
  8. Weon HY, Kim BY, Yoo SH, Joa JH, Lee KH et al. Aurantimonas ureilytica sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2007; 57:1717–1720 [View Article][PubMed]
    [Google Scholar]
  9. Kim MS, Hoa KT, Baik KS, Park SC, Seong CN et al. Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2008; 58:1142–1146 [View Article][PubMed]
    [Google Scholar]
  10. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol 2013; 63:2430–2435 [View Article][PubMed]
    [Google Scholar]
  11. Madhaiyan M, Hu CJ, Jegan Roy J, Kim SJ, Weon HY et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:1702–1708 [View Article][PubMed]
    [Google Scholar]
  12. Cho Y, Lee I, Yang YY, Baek K, Yoon SJ et al. Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol 2015; 65:3564–3569 [View Article][PubMed]
    [Google Scholar]
  13. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016; 66:3345–3354 [View Article][PubMed]
    [Google Scholar]
  14. Reilly TJ, Calcutt MJ, Wennerdahl LA, Williams F, Evans TJ et al. Isolation of Aureimonas altamirensis, a Brucella canis-like bacterium, from an edematous canine testicle. J Vet Diagn Invest 2014; 26:795–798 [View Article][PubMed]
    [Google Scholar]
  15. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL et al. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans nees. Int J Syst Evol Microbiol 2008; 58:2525–2528 [View Article][PubMed]
    [Google Scholar]
  16. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  17. Waksman SA. The Actinomycetes, Vol. 2. Classification, Identification and Description of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  18. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  19. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  20. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [View Article][PubMed]
    [Google Scholar]
  21. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  22. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  24. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990 MIDI Technical note 101
    [Google Scholar]
  27. Tuo L, Dong YP, Habden X, Liu JM, Guo L et al. Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 2015; 65:1604–1610 [View Article][PubMed]
    [Google Scholar]
  28. Nichols PD, Guckert JB, White DC. Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 1986; 5:49–55 [View Article]
    [Google Scholar]
  29. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by High-Performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  31. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  32. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  33. Swindell SR, Plasterer TN. SEQMAN. contig assembly. Methods Mol Biol 1997; 70:75–89[PubMed]
    [Google Scholar]
  34. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  37. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  40. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002046
Loading
/content/journal/ijsem/10.1099/ijsem.0.002046
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error