1887

Abstract

A novel actinomycete, strain SR3-134, belonging to the genus , was isolated from soil collected from the Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima Province, Thailand. The taxonomic position of the strain was characterized by using a polyphasic approach. -Diaminopimelic acid, glucose, mannose and ribose were detected in its whole-cell hydrolysates. The -acyl type of muramic acid was acetyl. The menaquinones were MK-9(H), MK-9(H), MK-9(H) and MK-9(H). The predominant cellular fatty acids were anteiso-C, iso-C, C, iso-C, anteiso-C and iso-C. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. analysis of the almost-complete 16S rRNA gene showed 98.7 % sequence similarities to JCM 4588 and JCM 4434. The DNA G+C content was 71.4 mol%. Strain SR3-134 showed low DNA–DNA relatedness (12.9±4.0–44.1±1.0 %) to JCM 4588 and JCM 4434. The new strain could also be distinguished from its closely related strains by differences in their phenotypic characteristics. The results of taxonomic analysis suggested that strain SR3-134 represented a novel species of the genus for which the name sp. nov. is proposed. The type strain is SR3-134 (=TISTR 2494=KCTC 39910).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002212
2017-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3854.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002212&mimeType=html&fmt=ahah

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341[PubMed]
    [Google Scholar]
  2. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  3. Kämpfer P. Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI. et al. (editors) Bergey’s Manual of Systematic Bacteriology Part B, 2nd ed. vol. 5 New York: Springer;; 2012 pp. 1455–1767 [Crossref]
    [Google Scholar]
  4. She W, Sun Z, Yi L, Zhao S, Liang Y. Streptomyces alfalfae sp. nov. and comparisons with its closest taxa Streptomyces silaceus, Streptomyces flavofungini and Streptomyces intermedius . Int J Syst Evol Microbiol 2016; 66:44–49 [View Article][PubMed]
    [Google Scholar]
  5. Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999; 398:701–704 [View Article]
    [Google Scholar]
  6. Mingma R, Duangmal K, Thamchaipenet A, Trakulnaleamsai S, Matsumoto A et al. Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant. J Antibiot 2015; 68:368–372 [View Article][PubMed]
    [Google Scholar]
  7. Lh X, Tiang YQ, Zhang YF, Zhao LX, Jiang CL et al. A new species of the genus Streptomyces from soil, lake and hot-spring. Int J Syst Bacteriol 1998; 48:1089–1093 [Crossref]
    [Google Scholar]
  8. Silva FS, Souza DT, Zucchi TD, Pansa CC, de Figueiredo Vasconcellos RL et al. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766). Antonie van Leeuwenhoek 2016; 109:1467–1474 [View Article][PubMed]
    [Google Scholar]
  9. Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K et al. Streptomyces verrucosisporus sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 2016; 66:3607–3613 [View Article][PubMed]
    [Google Scholar]
  10. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58:1–26 [View Article][PubMed]
    [Google Scholar]
  11. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  12. Torikata A, Enokita R, Okazaki T, Nakajima M, Iwado S et al. Mycoplanecins, novel antimycobacterial antibiotics from Actinoplanes awajinensis subsp. mycoplanecinus subsp. nov. I. Taxonomy of producing organism and fermentation. J Antibiot 1983; 36:957–960 [View Article][PubMed]
    [Google Scholar]
  13. Kelly KL. Inter-Society Color Council - National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  14. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  15. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  16. Uchida K, Aida K. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30:131–134 [View Article]
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  18. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–148
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  26. Kluge AG, Farris JS. Quantitative phyletics and the evolution of Anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  31. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  32. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002212
Loading
/content/journal/ijsem/10.1099/ijsem.0.002212
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error