1887

Abstract

A novel, rod-shaped, Gram-stain-negative, halophilic and non-motile bacterium, designated CCB-MM1, was isolated from a sample of estuarine sediment collected from Matang Mangrove Forest, Malaysia. The cells possessed a rod–coccus cell cycle in association with growth phase and formed aggregates. Strain CCB-MM1 was both catalase and oxidase positive, and able to degrade starch. Optimum growth occurred at 30 °C and pH 7.0 in the presence of 2–3 % (w/v) NaCl. The 16S rRNA gene sequence of strain CCB-MM1 showed 98.12, 97.46 and 97.33 % sequence similarity with Cs16b, TF-17 and GY2 respectively. Strain CCB-MM1 and Cs16b formed a cluster in the phylogenetic tree. The major cellular fatty acids were iso-C ω9 and iso-C, and the total polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphoaminolipid, two unidentified lipids, an unidentified glycolipid and an unidentified aminolipid. The major respiratory quinone was ubiquinone Q-8 and the genomic DNA G+C content of the strain was 58.9 mol%. On the basis of the phylogenetic, phenotypic and genotypic data presented here, strain CCB-MM1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CCB-MM1 (=LMG 29920=JCM 31875).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002258
2017-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4089.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002258&mimeType=html&fmt=ahah

References

  1. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997; 47:369–376 [View Article][PubMed]
    [Google Scholar]
  2. Jeong SH, Yang SH, Jin HM, Kim JM, Kwon KK et al. Microbulbifer gwangyangensis sp. nov. and Microbulbifer pacificus sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2013; 63:1335–1341 [View Article][PubMed]
    [Google Scholar]
  3. Vashist P, Nogi Y, Ghadi SC, Verma P, Shouche YS. Microbulbifer mangrovi sp. nov., a polysaccharide-degrading bacterium isolated from an Indian mangrove. Int J Syst Evol Microbiol 2013; 63:2532–2537 [View Article][PubMed]
    [Google Scholar]
  4. Camacho M, del Carmen Montero-Calasanz M, Redondo-Gómez S, Rodríguez-Llorente I, Schumann P et al. Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016; 66:1844–1850 [View Article][PubMed]
    [Google Scholar]
  5. Lee JY, Kim PS, Hyun DW, Kim HS, Shin NR et al. Microbulbifer echini sp. nov., isolated from the gastrointestinal tract of a purple sea urchin, Heliocidaris crassispina. Int J Syst Evol Microbiol 2017; 67:998–1004 [View Article][PubMed]
    [Google Scholar]
  6. Park S, Yoon SY, Ha MJ, Yoon JH. Microbulbifer aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:1436–1441 [View Article][PubMed]
    [Google Scholar]
  7. Baba A, Miyazaki M, Nagahama T, Nogi Y. Microbulbifer chitinilyticus sp. nov. and Microbulbifer okinawensis sp. nov., chitin-degrading bacteria isolated from mangrove forests. Int J Syst Evol Microbiol 2011; 61:2215–2220 [View Article][PubMed]
    [Google Scholar]
  8. Zhang DS, Huo YY, Xu XW, Wu YH, Wang CS et al. Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2012; 62:505–510 [View Article][PubMed]
    [Google Scholar]
  9. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53:53–57 [View Article][PubMed]
    [Google Scholar]
  10. Spring S, Scheuner C, Göker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281 [View Article][PubMed]
    [Google Scholar]
  11. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015; 65:2017–2025 [View Article]
    [Google Scholar]
  12. Nishijima M, Takadera T, Imamura N, Kasai H, An KD et al. Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 2009; 59:1696–1707 [View Article][PubMed]
    [Google Scholar]
  13. Furusawa G, Lau NS, Shu-Chien AC, Jaya-Ram A, Amirul AA. Identification of polyunsaturated fatty acid and diterpenoid biosynthesis pathways from draft genome of Aureispira sp. CCB-QB1. Mar Genomics 2015; 19:39–44 [View Article][PubMed]
    [Google Scholar]
  14. Dinesh B, Lau NS, Furusawa G, Kim SW, Taylor TD et al. Comparative genome analyses of novel Mangrovimonas-like strains isolated from estuarine mangrove sediments reveal xylan and arabinan utilization genes. Mar Genomics 2016; 25:115–121 [View Article][PubMed]
    [Google Scholar]
  15. Wang CS, Wang Y, Xu XW, Zhang DS, Wu YH et al. Microbulbifer donghaiensis sp. nov., isolated from marine sediment of the east China Sea. Int J Syst Evol Microbiol 2009; 59:545–549 [View Article][PubMed]
    [Google Scholar]
  16. Yoon JH, Kim IG, Oh TK, Park YH. Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 2004; 54:1111–1116 [View Article][PubMed]
    [Google Scholar]
  17. Kämpfer P, Arun AB, Young CC, Rekha PD, Martin K et al. Microbulbifer taiwanensis sp. nov., isolated from coastal soil. Int J Syst Evol Microbiol 2012; 62:2485–2489 [View Article][PubMed]
    [Google Scholar]
  18. Dinesh B, Furusawa G, Amirul AA. Mangrovimonas xylaniphaga sp. nov. isolated from estuarine mangrove sediment of Matang Mangrove Forest, Malaysia. Arch Microbiol 2017; 199:63–67 [View Article][PubMed]
    [Google Scholar]
  19. Miyazaki M, Nogi Y, Ohta Y, Hatada Y, Fujiwara Y et al. Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 2008; 58:1128–1133 [View Article][PubMed]
    [Google Scholar]
  20. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  21. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  22. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  23. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society of Microbiology; 2007 pp. 330–393
    [Google Scholar]
  24. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  32. Moh TH, Lau NS, Furusawa G, Amirul AA. Complete genome sequence of Microbulbifer sp. CCB-MM1, a halophile isolated from Matang Mangrove Forest, Malaysia. Stand Genomic Sci 2017; 12:36 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002258
Loading
/content/journal/ijsem/10.1099/ijsem.0.002258
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error