1887

Abstract

A novel bacterial strain, designated LP91, was isolated from an agricultural field contaminated with hexachlorocyclohexane (HCH) isomers at Ummari Village, Lucknow, Uttar Pradesh, India. Cells of the strain were aerobic, short rod or coccoid, Gram-stain-negative and non-motile. Colonies of the strain were initially transparent but with time changed to a creamy white colour. Phylogenetic analysis based on the 16S rRNA marker gene showed that it was closely associated with GHD-30 (99.1 %) and NB88 (98.0 %), followed by 43P (97.9 %) and KKL-A5 (97.0 %). The DNA–DNA hybridization values of strain LP91 with the closely related type strains mentioned above were below 51.2±0.64 %, confirming it as a distinct species from other known species of the genus . The major cellular fatty acids of strain LP91 were C ω7/C  ω6 and C. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and aminophospholipid, along with other lipids including glycolipids, aminolipids and other unknown phosphoglycolipids. Spermine was the major polyamine, along with putrescine in a minor amount. Ubiquinone (Q-10) was the sole isoprenoid quinone. Based on the results of phylogenetic, phenotypic and chemotaxonomic analysis, it is proposed that the isolate represents a new species of the genus , for which the name sp. nov. is proposed. The type strain is LP91 (=KCTC 42938=CCM 8696=MCC 3128).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002289
2017-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4365.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002289&mimeType=html&fmt=ahah

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19:375–390 [View Article]
    [Google Scholar]
  2. Nguyen NL, Kim YJ, Hoang VA, Tran BT, Pham HS et al. Paracoccus panacisoli sp. nov., isolated from a forest soil cultivated with Vietnamese ginseng. Int J Syst Evol Microbiol 2015; 65:1491–1497 [View Article][PubMed]
    [Google Scholar]
  3. Mcginnis JM, Cole JA, Dickinson MC, Mingle LA, Lapierre P et al. Paracoccus sanguinis sp. nov., isolated from clinical specimens of New York State patients. Int J Syst Evol Microbiol 2015; 65:1877–1882 [View Article][PubMed]
    [Google Scholar]
  4. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:3469–3475 [View Article][PubMed]
    [Google Scholar]
  5. Nakamura A. Paracoccus laeviglucosivorans sp. nov., an L-glucose-utilizing bacterium isolated from soil. Int J Syst Evol Microbiol 2015; 65:3878–3884 [View Article][PubMed]
    [Google Scholar]
  6. Park S, Yoon SY, Jung YT, Won SM, Park DS et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2992–2998 [View Article][PubMed]
    [Google Scholar]
  7. Dominguez-Moñino I, Jurado V, Hermosin B, Saiz-Jimenez C. Paracoccus cavernae sp. nov., isolated from a show cave. Int J Syst Evol Microbiol 2016; 66:2265–2270 [View Article][PubMed]
    [Google Scholar]
  8. Kämpfer P, Aurass P, Karste S, Flieger A, Glaeser SP. Paracoccus contaminans sp. nov., isolated from a contaminated water microcosm. Int J Syst Evol Microbiol 2016; 66:5101–5105 [View Article][PubMed]
    [Google Scholar]
  9. Kelly DP, Rainey FA, Wood AP. The genus Paracoccus . In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes vol. 5 New York, USA: Springer-Verlag; 2006 pp. 232–249 [Crossref]
    [Google Scholar]
  10. Lipski A, Reichert K, Reuter B, Spröer C, Altendorf K. Identification of bacterial isolates from biofilters as Paracoccus alkenifer sp. nov. and Paracoccus solventivorans with emended description of Paracoccus solventivorans . Int J Syst Bacteriol 1998; 48:529–536 [View Article][PubMed]
    [Google Scholar]
  11. Doronina NV, Trotsenko YA, Krausova VI, Suzina NE. Paracoccus methylutens sp. nov. – a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Syst Appl Microbiol 1998; 21:230–236 [View Article]
    [Google Scholar]
  12. Roberston LA, Kuenen JG. Thiosphaera pantotropha gen. nov. sp. nov., a facultative anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol 1983; 129:2847–2855
    [Google Scholar]
  13. Ohara M, Katayama Y, Tsuzaki M, Nakamoto S, Kuraishi H. Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. Int J Syst Bacteriol 1990; 40:292–296 [View Article][PubMed]
    [Google Scholar]
  14. Li K, Wang S, Shi Y, Qu J, Zhai Y et al. Genome sequence of Paracoccus sp. strain TRP, a chlorpyrifos biodegrader. J Bacteriol 2011; 193:1786–1787 [View Article][PubMed]
    [Google Scholar]
  15. Sun LN, Zhang J, Kwon SW, He J, Zhou SG et al. Paracoccus huijuniae sp. nov., an amide pesticide-degrading bacterium isolated from activated sludge of a wastewater biotreatment system. Int J Syst Evol Microbiol 2013; 63:1132–1137 [View Article][PubMed]
    [Google Scholar]
  16. Singh AK, Garg N, Lata P, Kumar R, Negi V et al. Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2014; 64:254–259 [View Article][PubMed]
    [Google Scholar]
  17. Singh AK, Garg N, Lal R. Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. Int J Syst Evol Microbiol 2015; 65:2248–2254 [View Article][PubMed]
    [Google Scholar]
  18. Kumar R, Dwivedi V, Nayyar N, Verma H, Singh AK et al. Parapedobacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2015; 65:129–134 [View Article][PubMed]
    [Google Scholar]
  19. Verma H, Rani P, Kumar Singh A, Kumar R, Dwivedi V et al. Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil. Int J Syst Evol Microbiol 2015; 65:3720–3726 [View Article][PubMed]
    [Google Scholar]
  20. Mahato NK, Tripathi C, Nayyar N, Singh AK, Lal R. Pontibacter ummariensis sp. nov., isolated from a hexachlorocyclohexane contaminated soil. Int J Syst Evol Microbiol 2016; 66:1080–1087 [View Article][PubMed]
    [Google Scholar]
  21. Rani P, Mukherjee U, Verma H, Kamra K, Lal R. Luteimonas tolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2016; 66:1851–1856 [View Article][PubMed]
    [Google Scholar]
  22. Dadhwal M, Singh A, Prakash O, Gupta SK, Kumari K et al. Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 2009; 106:381–392 [View Article][PubMed]
    [Google Scholar]
  23. Prakash O, Kumari K, Lal R. Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 2007; 57:527–531 [View Article][PubMed]
    [Google Scholar]
  24. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407–438[PubMed]
    [Google Scholar]
  25. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2000
    [Google Scholar]
  26. Singh AK, Garg N, Sangwan N, Negi V, Kumar R et al. Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. Int J Syst Evol Microbiol 2013; 63:2829–2834 [View Article][PubMed]
    [Google Scholar]
  27. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: Wiley; 1991 pp. 115–175
    [Google Scholar]
  28. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  33. Bowman JP, Nichols CM, Gibson JA. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003; 53:1343–1355 [View Article][PubMed]
    [Google Scholar]
  34. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  35. Jones MP, McCarthy AJ, Cross T. Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 1979; 115:343–354 [View Article][PubMed]
    [Google Scholar]
  36. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  37. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  38. Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N et al. Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 2012; 7:e46219 [View Article][PubMed]
    [Google Scholar]
  39. Garg N, Lata P, Jit S, Sangwan N, Singh AK et al. Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation 2016; 27:179–193 [View Article][PubMed]
    [Google Scholar]
  40. Kumari R, Subudhi S, Suar M, Dhingra G, Raina V et al. Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 2002; 68:6021–6028 [View Article][PubMed]
    [Google Scholar]
  41. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496[PubMed]
    [Google Scholar]
  42. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  43. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in Actinomycetes and Corynebacteria . J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  44. Collins MD, Shah HN, Minnikin DE. A note on the separation of natural contaminated soil. Int J Syst Evol Microbiol 1980; 65:129–134
    [Google Scholar]
  45. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  46. Loveland-Curtze J, Miteva VI, Brenchley JE. Evaluation of a new fluorimetric DNA-DNA hybridization method. Can J Microbiol 2011; 57:250–255 [View Article][PubMed]
    [Google Scholar]
  47. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  48. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
  49. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773[PubMed] [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002289
Loading
/content/journal/ijsem/10.1099/ijsem.0.002289
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error