1887

Abstract

A novel Gram-stain-positive, motile, endospore-forming, rod-shaped bacterial strain, NEAU-cbsb5, was isolated from forest soil from Changbai Mountain, Heilongjiang Province, China. The isolate grew at 15–40 °C (optimum 30 °C), at pH 6.0–8.0 (optimum pH 7.0) and in the presence of up to 4 % (w/v) NaCl, although NaCl was not required for growth. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NEAU-cbsb5 formed a distinct lineage within the genus and was most closely related to DSM 18954 (99.1 % similarity) and JCM 12212 (99.0 %). 16S rRNA gene sequence similarity to sequences of the type strains of other species was less than 96.0 %. Average nucleotide identity (ANI) values between NEAU-cbsb5 and its most closely related species were 78.72–84.75 % by ANIm, ANIb and OrthoANIu analysis. The DNA–DNA hybridization values between strain NEAU-cbsb5 and its close relatives DSM 18954 and JCM 12212 were both 23.80 %, again indicating they belong to different taxa. The major cellular fatty acids of NEAU-cbsb5 were iso-C, anteiso-C and C. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unknown aminophospholipid. The cell-wall peptidoglycan contained -diaminopimelic acid and the predominant menaquinones were MK-7 and MK-6. The genomic DNA G+C content was 33.0 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic data, strain NEAU-cbsb5 was classified as a representative of a novel species in the genus for which the name sp. nov. is proposed. The type strain is NEAU-cbsb5 (=CGMCC 1.14993=DSM 100485).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002312
2017-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4449.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002312&mimeType=html&fmt=ahah

References

  1. Cohn F. Untersuchungen über Bakterien. Beitrage zur Biologie der Pflanzen 1872; 1:127–224
    [Google Scholar]
  2. Logan NA, De Vos P. Genus Bacillus Cohn 1872. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer; 2009 pp. 21–128
    [Google Scholar]
  3. Logan NA, Halket G. Developments in the taxonomy of the aerobic, endospore-forming bacteria. In Logan NA, De Vos P. (editors) Aerobic, Endospore-forming Soil Bacteria, Berlin: Springer-Verlag; 2011 pp. 1–29 [Crossref]
    [Google Scholar]
  4. Zhang S, Li Z, Yan Y, Zhang C, Li J et al. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:2305–2312 [View Article][PubMed]
    [Google Scholar]
  5. He HS, Hao ZQ, Mladenoff DJ, Shao GF, Ym H et al. Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China. J Biogeogr 2005; 32:2043–2056 [Crossref]
    [Google Scholar]
  6. Shen C, Xiong J, Zhang H, Feng Y, Lin X et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 2013; 57:204–211 [View Article]
    [Google Scholar]
  7. Atlas RM. Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  8. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  9. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  10. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Woalod WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  11. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960 [Crossref]
    [Google Scholar]
  12. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  13. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  14. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Aboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  15. Woese CR, Gutell R, Gupta R, Noller HF. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 1983; 47:621–669[PubMed]
    [Google Scholar]
  16. Springer N, Ludwig W, Amann R, Schmidt HJ, Görtz HD et al. Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum . Proc Natl Acad Sci USA 1993; 90:9892–9895 [View Article][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  22. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [Crossref]
    [Google Scholar]
  23. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526[PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  25. Peak KK, Duncan KE, Veguilla W, Luna VA, King DS et al. Bacillus acidiceler sp. nov., isolated from a forensic specimen, containing Bacillus anthracis pX02 genes. Int J Syst Evol Microbiol 2007; 57:2031–2036 [View Article][PubMed]
    [Google Scholar]
  26. Logan NA, Lebbe L, Verhelst A, Goris J, Forsyth G et al. Bacillus luciferensis sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 2002; 52:1985–1989 [View Article][PubMed]
    [Google Scholar]
  27. Bhandari V, Ahmod NZ, Shah HN, Gupta RS. Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus . Int J Syst Evol Microbiol 2013; 63:2712–2726 [View Article][PubMed]
    [Google Scholar]
  28. Schmidt TR, Scott EJ, Dyer DW. Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics 2011; 12:430 [View Article][PubMed]
    [Google Scholar]
  29. Miller RA, Beno SM, Kent DJ, Carroll LM, Martin NH et al. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int J Syst Evol Microbiol 2016; 66:4744–4753 [View Article][PubMed]
    [Google Scholar]
  30. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  31. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek doi:10.1007/s10482-017-0844-4 [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  36. Dunlap CA. Phylogenomic analysis shows that ‘Bacillus vanillea’ is a later heterotypic synonym of Bacillus siamensis . Int J Syst Evol Microbiol 2015; 65:3507–3510 [View Article][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  38. Dunlap CA, Kim S-J, Kwon S-W, Rooney AP. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 2016; 66:1212–1217 [Crossref]
    [Google Scholar]
  39. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [View Article][PubMed]
    [Google Scholar]
  40. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  41. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–284
    [Google Scholar]
  42. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  43. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article][PubMed]
    [Google Scholar]
  44. Mehrshad M, Amoozegar MA, Didari M, Bagheri M, Fazeli SA et al. Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:2776–2781 [View Article][PubMed]
    [Google Scholar]
  45. Bagheri M, Didari M, Amoozegar MA, Schumann P, Sánchez-Porro C et al. Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. Int J Syst Evol Microbiol 2012; 62:811–816 [View Article][PubMed]
    [Google Scholar]
  46. Chen YG, Zhang YQ, He JW, Klenk HP, Xiao JQ et al. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. Int J Syst Evol Microbiol 2011; 61:2950–2955 [View Article][PubMed]
    [Google Scholar]
  47. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
  48. Kämpfer P. Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 1994; 17:86–98 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002312
Loading
/content/journal/ijsem/10.1099/ijsem.0.002312
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error