1887

Abstract

An aerobic facultatively methylotrophic bacterium was isolated from roots of L. and designated strain Osot The cells of this strain were Gram-stain-negative, asporogenous, motile short rods multiplying by binary fisson. They utilized methanol, methylamines and a variety of polycarbon compounds as the carbon and energy sources. Methanol was assimilated after sequential oxidation to formaldehyde and CO via the ribulose bisphosphate pathway. The organism grew optimally at 22–29 °C and pH 7.5–8.0. The dominant phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and diphosphatidylglycerol (cardiolipin). The major cellular fatty acids of strain Osot cells grown in R2A medium were C 7 (49.0 %), C 8 cyclo (38.3 %) and C (8.4 %). The major ubiquinone was Q-10. The DNA G+C content of strain Osot was 66.1 mol% ( ). On the basis of 16S rRNA gene sequence analysis strain Osot is phylogenetically related to the members of genus (97.1–98.8 % sequence similarity). Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (27–29 %) with type strains of the genus , the novel isolate is classified as a new species of this genus and named sp. nov.; the type strain is Osot (=VKM B-3145=JCM 32039).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002330
2017-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4552.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002330&mimeType=html&fmt=ahah

References

  1. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  2. Wiegel J, Wilke D, Baumgarten J, Opitz R, Schlegel HG. Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. Int J Syst Bacteriol 1978; 28:573–581 [View Article]
    [Google Scholar]
  3. Raj HD. Proposal of Ancylobacter gen. nov. as a substitute for the bacterial genus Microcyclus Ørskov 1928. Int J Syst Bacteriol 1983; 33:397–398 [View Article]
    [Google Scholar]
  4. Vasilyeva LV, Semenov AM. Labrys monahos,a new budding prosthecate bacterium with radial symmetry. Mikrobiologiya 1984; 53:85–92
    [Google Scholar]
  5. Dreyfus B, Garcia JL, Gillis M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbaniarostrata . Int J Syst Bacteriol 1988; 38:89–98 [View Article]
    [Google Scholar]
  6. Kelly DP, Mcdonald IR, Wood AP. Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α-subclass of the Proteobacteria . Int J Syst Evol Microbiol 2000; 50:1797–1802 [View Article][PubMed]
    [Google Scholar]
  7. Kämpfer P, Young CC, Arun AB, Shen FT, Jäckel U et al. Pseudolabrys taiwanensis gen. nov., sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2006; 56:2469–2472 [View Article][PubMed]
    [Google Scholar]
  8. Arun AB, Schumann P, Chu HI, Tan CC, Chen WM et al. Pseudoxanthobacter soli gen. nov., sp. nov., a nitrogen-fixing alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2008; 58:1571–1575 [View Article][PubMed]
    [Google Scholar]
  9. Ørskov J. Beschreibung eines neuen Mikroben, Microcyclus aquaticus, mit eigentuemlicher Morphologie. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I 1928; 107:180–184
    [Google Scholar]
  10. Xin YH, Zhou YG, Zhou HL, Chen WX. Ancylobacter rudongensis sp. nov., isolated from roots of Spartina anglica . Int J Syst Evol Microbiol 2004; 54:385–388 [View Article][PubMed]
    [Google Scholar]
  11. Xin YH, Zhou YG, Chen WX. Ancylobacter polymorphus sp. nov. and Ancylobacter vacuolatus sp. nov. Int J Syst Evol Microbiol 2006; 56:1185–1188 [View Article][PubMed]
    [Google Scholar]
  12. Lang E, Swiderski J, Stackebrandt E, Schumann P, Spröer C et al. Description of Ancylobacter oerskovii sp. nov. and two additional strains of Ancylobacter polymorphus . Int J Syst Evol Microbiol 2008; 58:1997–2002 [View Article][PubMed]
    [Google Scholar]
  13. Firsova J, Doronina N, Lang E, Spröer C, Vuilleumier S et al. Ancylobacter dichloromethanicus sp. nov.–a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Syst Appl Microbiol 2009; 32:227–232 [View Article][PubMed]
    [Google Scholar]
  14. Poroshina MN, Doronina NV, Kaparullina EN, Kovalevskaya NP, Trotsenko YA. Halophilic and halotolerant aerobic methylobacteria from the technogenic Solikamsk biotopes. Microbiology 2013; 82:490–498 [View Article]
    [Google Scholar]
  15. Trotsenko I, Ivanova EG, Doronina NV. Aerobic methylotroph bacteria as phytosymbionts. Microbiology 2001; 70:623–632[PubMed] [Crossref]
    [Google Scholar]
  16. Hanson AD, Roje S. One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 2001; 52:119–137 [View Article][PubMed]
    [Google Scholar]
  17. Fedorov DN, Doronina NV, Trotsenko I. Phytosymbiosis of aerobic methylobacteria: new facts and views. Microbiology 2011; 80:443–454 [View Article][PubMed]
    [Google Scholar]
  18. Doronina NV, Torgonskaya ML, Fedorov DN, Trotsenko YA. Aerobic methylobacteria as promising objects of modern biotechnology (review). Appl Biochem Microbiol 2015; 51:125–134 [View Article]
    [Google Scholar]
  19. Doronina NV, Kaparullina EN, Trotsenko YA. Methyloversatilis thermotolerans sp. nov., a novel thermotolerant facultative methylotroph isolated from a hot spring. Int J Syst Evol Microbiol 2014; 64:158–164 [View Article][PubMed]
    [Google Scholar]
  20. Doronina NV, Trotsenko YA, Tourova TP, Kuznetsov BB, Leisinger T. Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane. Int J Syst Evol Microbiol 2001; 51:1051–1058 [View Article][PubMed]
    [Google Scholar]
  21. Gordon SA, Weber RP. Colorimetric estimation of indole-acetic acid. Plant Physiol 1951; 26:192–195 [View Article][PubMed]
    [Google Scholar]
  22. Agafonova NV, Kaparullina EN, Doronina NV, Trotsenko YA. Phosphate-solubilizing activity of aerobic methylobacteria. Microbiology 2013; 82:864–867 [View Article]
    [Google Scholar]
  23. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56 [View Article][PubMed]
    [Google Scholar]
  24. Arnow LE. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 1937; 118:531–537
    [Google Scholar]
  25. Trotsenko YA, Doronina NV, Govorukhina NI. Metabolism of non-motile obligately methylotrophic bacteria. FEMS Microbiol Lett 1986; 33:293–297 [View Article]
    [Google Scholar]
  26. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. (editor) Methods in Microbiology vol. 18 New York: Acad. Press; 1985 pp. 329–366
    [Google Scholar]
  27. Urakami T, Komagata K. Methanol-utilizing Ancylobacter strains and comparisonof their cellular fatty acid compositions and quinone systems with those of Spirosoma, Flectobacillus and Runella species. Int J Syst Bacteriol 1986; 36:415–421 [View Article]
    [Google Scholar]
  28. Kates M. Techniques of Lipidology New York: American Elsevier Publishing Co. Inc; 1972 [Crossref]
    [Google Scholar]
  29. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  30. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, United Kingdom: John Wiley & Sons; 1991 pp. 115–175
    [Google Scholar]
  31. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  33. Zaichikova MV, Berestovskaya YY, Akimov VN, Kizilova AK, Vasilieva LV. Ancylobacter abiegnus sp. nov., an oligotrophic member of the xylotrophic mycobacterial community. Microbiology 2010; 79:483–490 [View Article]
    [Google Scholar]
  34. Anthony C, Williams P. The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 2003; 1647:18–23 [View Article][PubMed]
    [Google Scholar]
  35. McDonald IR, Murrell JC. The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 1997; 63:3218–3224[PubMed]
    [Google Scholar]
  36. Balachandar D, Raja P, Sundaram S. Genetic and metabolic diversity of pink-pigmented facultative methylotrophs in phyllosphere of tropical plants. Braz J Microbiol 2008; 39:68–73 [View Article][PubMed]
    [Google Scholar]
  37. Ivanova E, Doronina N, Trotsenko Y. Hansschlegelia plantiphila gen. nov. sp. nov., a new aerobic restricted facultative methylotrophic bacterium associated with plants. Syst Appl Microbiol 2007; 30:444–452 [View Article][PubMed]
    [Google Scholar]
  38. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002330
Loading
/content/journal/ijsem/10.1099/ijsem.0.002330
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error