1887

Abstract

A novel, non-motile coccoid, Gram-positive and non-endospore forming bacterium, designated Hv14b, was isolated from the rhizosphere of the halophyte . It was observed to be catalase positive and oxidase negative and able to hydrolyse starch. MK-8(H) was identified as the dominant menaquinone and the major cellular fatty acids were anteiso-C and iso-C. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The 16S rRNA genes showed the highest 16S rRNA sequence identity with DSM 14382, DSM 20447 and DSM 22143. Based on the phenotypic and molecular features and DNA–DNA hybridization data, it is concluded that strain Hv14b is proposed to represent a novel species in the genus sp. nov., with the type strain Hv14b=DSM 28714=CECT 9229.

Keyword(s): opm , rhizosphere and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002401
2017-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5006.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002401&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995; 45:682–692 [View Article][PubMed]
    [Google Scholar]
  2. Dastager SG, Tang SK, Srinivasan K, Lee JC, Li WJ. Kocuria indica sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 2014; 64:869–874 [View Article][PubMed]
    [Google Scholar]
  3. Kim SB, Nedashkovskaya OI, Mikhailov VV, Han SK, Kim KO et al. Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 2004; 54:1617–1620 [View Article][PubMed]
    [Google Scholar]
  4. Seo YB, Kim DE, Kim GD, Kim HW, Nam SW et al. Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int J Syst Evol Microbiol 2009; 59:2769–2772 [View Article][PubMed]
    [Google Scholar]
  5. Li WJ, Zhang YQ, Schumann P, Chen HH, Hozzein WN et al. Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol 2006; 56:733–737 [View Article][PubMed]
    [Google Scholar]
  6. Tang SK, Wang Y, Lou K, Mao PH, Xu LH et al. Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 2009; 59:1316–1320 [View Article][PubMed]
    [Google Scholar]
  7. Wang K, Zhang L, Liu Y, Pan Y, Meng L et al. Kocuria dechangensis sp. nov., an actinobacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol 2015; 65:3024–3030 [View Article][PubMed]
    [Google Scholar]
  8. Kloos WE, Tornabene TG, Schleifer KH. Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae . Int J Syst Bacteriol 1974; 24:79–101 [View Article]
    [Google Scholar]
  9. Zhou G, Luo X, Tang Y, Zhang L, Yang Q et al. Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. Int J Syst Evol Microbiol 2008; 58:1304–1307 [View Article][PubMed]
    [Google Scholar]
  10. Park EJ, Kim MS, Roh SW, Jung MJ, Bae JW. Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 2010; 60:914–918 [View Article][PubMed]
    [Google Scholar]
  11. Park EJ, Roh SW, Kim MS, Jung MJ, Shin KS et al. Kocuria koreensis sp. nov., isolated from fermented seafood. Int J Syst Evol Microbiol 2010; 60:140–143 [View Article][PubMed]
    [Google Scholar]
  12. Yun JH, Roh SW, Jung MJ, Kim MS, Park EJ et al. Kocuria salsicia sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011; 61:286–289 [View Article][PubMed]
    [Google Scholar]
  13. Reddy GS, Prakash JS, Prabahar V, Matsumoto GI, Stackebrandt E et al. Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 2003; 53:183–187 [View Article][PubMed]
    [Google Scholar]
  14. Mayilraj S, Kroppenstedt RM, Suresh K, Saini HS. Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. Int J Syst Evol Microbiol 2006; 56:1971–1975 [View Article][PubMed]
    [Google Scholar]
  15. Kovács G, Burghardt J, Pradella S, Schumann P, Stackebrandt E et al. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 1999; 49:167–173 [View Article][PubMed]
    [Google Scholar]
  16. Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, Davy AJ. Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum . Plant Biol 2010; 12:79–87 [View Article][PubMed]
    [Google Scholar]
  17. Vincent JM. A Manual for the Practical Study of Root-Nodule Bacteria Blackwell Scientific Publications: Oxford; 1970
    [Google Scholar]
  18. Pelczar MJ. (editor) Manual of Microbiological Methods New York: McGraw-Hill Book Co; 1957
    [Google Scholar]
  19. Halebian S, Harris B, Finegold SM, Rolfe RD. Rapid method that aids in distinguishing gram-positive from gram-negative anaerobic bacteria. J Clin Microbiol 1981; 13:444–448[PubMed]
    [Google Scholar]
  20. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  21. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 2013; 29:1823–1824 [View Article][PubMed]
    [Google Scholar]
  22. Vaas LA, Sikorski J, Michael V, Göker M, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012; 7:e34846 [View Article][PubMed]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  25. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Kroppenstedt RM, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora . In Dworkin M, Falkow S, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes, 3rd ed. New York: Springer; 2006 pp. 682–724 [Crossref]
    [Google Scholar]
  28. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  29. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  30. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129 [Crossref]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  32. Giovannoni SJ. The polymerase chain reaction. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Hoboken, New Jersey: John Wiley & Sons Ltd; 1991 pp. 175–203
    [Google Scholar]
  33. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999; 41:95–98
    [Google Scholar]
  34. Montero-Calasanz MC, Göker M, Pötter G, Rohde M, Spröer C et al. Geodermatophilus africanus sp. nov., a halotolerant actinomycete isolated from Saharan desert sand. Antonie van Leeuwenhoek 2013; 104:207–216 [View Article][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  38. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  39. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  40. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  41. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  42. Stackebrandt E, Schumann P, Genus V. Kocuria Stackebrandt et al. 1995, 690VP. In Whitman W, Goodfellow M, Kämpfer P, Busse H-J, Trujillo M. et al. (editors) Bergey’s Manual® of Systematic Bacteriology Berlin/Heidelberg: Springer Science & Business Media; 2012 pp. 626–635
    [Google Scholar]
  43. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002401
Loading
/content/journal/ijsem/10.1099/ijsem.0.002401
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error