1887

Abstract

Strain S27 is a Gram-stain-positive, regular rod-shaped, non-motile, non-spore-forming, yellow pigmented actinobacterium which was isolated from an aerated laboratory scale fermenter fed with wastes of a yeast factory. The strain was classified as sp. after the analysis of its peptidoglycan revealed a novel B-type structure established as variation B2δ by Hensel in 1984. As the combination of the peptidoglycan amino acids 2,4-diaminobutyric acid (Dab), threonine (Thr), glycine (Gly), alanine (Ala) and glutamic acid (Glu) is in disagreement with the current genus definition of but is typical of several species, the taxonomic status of strain S27 was re-examined by a polyphasic study. Comparative analyses of 16S rRNA gene sequences and the occurrence of -Dab, -Ala, -Ala, Gly, -Thr, -Glu and lower amounts of -Glu in the peptidoglycan in combination with the predominating menaquinones MK-11, MK-10 and MK-9, phosphatidylglycerol, and one unknown glycolipid as the major polar lipids (and trace amounts of diphosphatidylglycerol and an unknown phospholipid), a profile with anteiso-C, iso-C, iso-C, anteiso-C and iso-C as major fatty acids and the G+C value of 70.1 mol% confirmed the affiliation to the genus and revealed that S27 (=DSM 20621 =CCM 8762) is the type strain of a new species for which the name sp. nov. is proposed. The availability of new data allows for an emended description of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002454
2017-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5244.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002454&mimeType=html&fmt=ahah

References

  1. Hensel R. Three new murein types in coryneform bacteria isolated from activated sludge. Syst Appl Microbiol 1984; 5:11–19 [View Article]
    [Google Scholar]
  2. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129 [Crossref]
    [Google Scholar]
  3. Döpfer H, Stackebrandt E, Fiedler F. Nucleic acid hybridization studies on Microbacterium, Curtobacterium, Agromyces and related taxa. J Gen Microbiol 1982; 128:1697–1708 [View Article][PubMed]
    [Google Scholar]
  4. Morais PV, Paulo C, Francisco R, Branco R, Paula Chung A et al. Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 2006; 29:414–421 [View Article][PubMed]
    [Google Scholar]
  5. Morais PV, Francisco R, Branco R, Chung AP, da Costa MS. Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 2004; 27:646–652 [View Article][PubMed]
    [Google Scholar]
  6. Muir RE, Tan MW. Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens . Int J Syst Evol Microbiol 2007; 57:2770–2776 [View Article][PubMed]
    [Google Scholar]
  7. Sturm G, Jacobs J, Spröer C, Schumann P, Gescher J. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int J Syst Evol Microbiol 2011; 61:956–960 [View Article][PubMed]
    [Google Scholar]
  8. Halpern M, Shakéd T, Pukall R, Schumann P. Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 2009; 59:665–670 [View Article][PubMed]
    [Google Scholar]
  9. Clark LC, Hodgkin J. Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer . Int J Syst Evol Microbiol 2015; 65:3977–3984 [View Article][PubMed]
    [Google Scholar]
  10. Shin NR, Kim MS, Jung MJ, Roh SW, Nam YD et al. Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 2011; 61:2353–2357 [View Article][PubMed]
    [Google Scholar]
  11. Somvanshi VS, Lang E, Schumann P, Pukall R, Kroppenstedt RM et al. Leucobacter iarius sp. nov., in the family Microbacteriaceae . Int J Syst Evol Microbiol 2007; 57:682–686 [View Article][PubMed]
    [Google Scholar]
  12. Martin E, Lodders N, Jäckel U, Schumann P, Kämpfer P. Leucobacter aerolatus sp. nov., from the air of a duck barn. Int J Syst Evol Microbiol 2010; 60:2838–2842 [View Article][PubMed]
    [Google Scholar]
  13. Lai WA, Lin SY, Hameed A, Hsu YH, Liu YC et al. Leucobacter zeae sp. nov., isolated from the rhizosphere of maize (Zea mays L.). Int J Syst Evol Microbiol 2015; 65:4734–4742 [View Article][PubMed]
    [Google Scholar]
  14. Zhu D, Zhang P, Li P, Wu J, Xie C et al. Description of Leucobacter holotrichiae sp. nov., isolated from the gut of Holotrichia oblita larvae. Int J Syst Evol Microbiol 2016; 66:1857–1861 [View Article][PubMed]
    [Google Scholar]
  15. Chun BH, Lee HJ, Jeong SE, Schumann P, Jeon CO. Leucobacter ruminantium sp. nov., isolated from the bovine rumen. Int J Syst Evol Microbiol 2017; 67:2634–2639 [View Article][PubMed]
    [Google Scholar]
  16. Yokota A. Genus XIV. Leucobacter . In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey's Manual of Systematic Bacteriology vol. 5 New York: Springer; 2012 pp. 923–932
    [Google Scholar]
  17. Takeuchi M, Weiss N, Schumann P, Yokota A. Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:967–971 [View Article][PubMed]
    [Google Scholar]
  18. Lin YC, Uemori K, de Briel DA, Arunpairojana V, Yokota A. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 2004; 54:1669–1676 [View Article][PubMed]
    [Google Scholar]
  19. Weon HY, Anandham R, Tamura T, Hamada M, Kim SJ et al. Leucobacter denitrificans sp. nov., isolated from cow dung. J Microbiol 2012; 50:161–165 [View Article][PubMed]
    [Google Scholar]
  20. Yun JH, Roh SW, Kim MS, Jung MJ, Park EJ et al. Leucobacter salsicius sp. nov., from a salt-fermented food. Int J Syst Evol Microbiol 2011; 61:502–506 [View Article][PubMed]
    [Google Scholar]
  21. Lee JH, Lee SS. Leucobacter margaritiformis sp. nov., isolated from bamboo extract. Curr Microbiol 2012; 64:441–448 [View Article][PubMed]
    [Google Scholar]
  22. Ue H. Leucobacter exalbidus sp. nov., an actinobacterium isolated from a mixed culture from compost. J Gen Appl Microbiol 2011; 57:27–33 [View Article][PubMed]
    [Google Scholar]
  23. Behrendt U, Ulrich A, Schumann P. Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 2008; 58:2574–2578 [View Article][PubMed]
    [Google Scholar]
  24. Fang W, Li X, Tan XM, Wang LF, Piao CG et al. Leucobacter populi sp. nov. isolated from a symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol 2016; 66:2254–2258 [View Article][PubMed]
    [Google Scholar]
  25. Kim HJ, Lee SS. Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water. J Microbiol 2011; 49:1044–1049 [View Article][PubMed]
    [Google Scholar]
  26. Her J, Lee SS. Leucobacter humi sp. nov., isolated from forest soil. Curr Microbiol 2015; 71:235–242 [View Article][PubMed]
    [Google Scholar]
  27. Alves A, Correia A, Igual JM, Trujillo ME. Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium . Syst Appl Microbiol 2014; 37:474–479 [View Article][PubMed]
    [Google Scholar]
  28. Krishnamurthi S, Bhattacharya A, Schumann P, Dastager SG, Tang SK et al. Microbacterium immunditiarum sp. nov., an actinobacterium isolated from landfill surface soil, and emended description of the genus Microbacterium . Int J Syst Evol Microbiol 2012; 62:2187–2193 [View Article][PubMed]
    [Google Scholar]
  29. Takeuchi M, Hatano K. Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium . Int J Syst Bacteriol 1998; 48:739–747 [View Article][PubMed]
    [Google Scholar]
  30. Ottow JC. Detection of hippurate hydrolase among Bacillus species by thin layer chromatography and other methods. J Appl Bacteriol 1974; 37:15–30 [View Article][PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  35. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  36. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  37. Schumann P, Pukall R. The discriminatory power of ribotyping as automatable technique for differentiation of bacteria. Syst Appl Microbiol 2013; 36:369–375 [View Article][PubMed]
    [Google Scholar]
  38. Schumann P, Maier T. MALDI-TOF mass spectrometry applied to classification and identification of bacteria. Methods Microbiol 2014; 41:275–306 [Crossref]
    [Google Scholar]
  39. Sasaki J, Chijimatsu M, Suzuki K. Taxonomic significance of 2,4-diaminobutyric acid isomers in the cell wall peptidoglycan of actinomycetes and reclassification of Clavibacter toxicus as Rathayibacter toxicus comb. nov. Int J Syst Bacteriol 1998; 48:403–410 [View Article][PubMed]
    [Google Scholar]
  40. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  41. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  42. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article][PubMed]
    [Google Scholar]
  43. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  44. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O'Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics New York: John Wiley & Sons; 1994 pp. 121–161
    [Google Scholar]
  45. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992; 72:315–321 [View Article]
    [Google Scholar]
  46. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  47. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  48. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002454
Loading
/content/journal/ijsem/10.1099/ijsem.0.002454
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error