1887

Abstract

A novel Gram-stain-positive bacterial strain, designated as K13, was isolated from compost and characterized using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain showed highest similarity (93.8 %) to MX2-3. Cells of strain K13 were aerobic, motile rods. The major fatty acids were anteiso C (34.4 %), iso C (17.3 %) and C (10.0 %). The major menaquinone was MK-7, the polar lipid profile included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine and an aminophospholipid. The DNA G+C content was 52.3 %. Based on phenotypic, including chemotaxonomic characteristics and analysis of the 16S rRNA gene sequences, it was concluded that strain K13 represents a novel genus, for which the name gen. nov., sp. nov. is proposed. The type species of the genus is , the type strain of which is strain K13 (=DSM 29793=NCAIM B.02605).

Keyword(s): compost , new genus , Paenibacillaceae and xylan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002523
2018-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/698.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002523&mimeType=html&fmt=ahah

References

  1. Ryckeboer J, Mergaert J, Vaes K, Klammer S, de Clercq D et al. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 2003; 53:349–410
    [Google Scholar]
  2. de Vos P, Ludwig W, Schleifer KH, Whitman WB. Paenibacillaceae fam. nov. In list of new names and new combinations previously effectively, but not validly, published, validation list no. 132. Int J Syst Evol Microbiol 2010; 60:469–472 [Crossref]
    [Google Scholar]
  3. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 1993; 64:253–260[PubMed] [Crossref]
    [Google Scholar]
  4. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  5. Saha P, Krishnamurthi S, Bhattacharya A, Sharma R, Chakrabarti T. Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2010; 60:422–428 [View Article][PubMed]
    [Google Scholar]
  6. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  7. Bozzola JJ, Russell LD. Electron Microscopy, 2nd ed. Sudbury: Jones and Bartlett Publishers; 1998
    [Google Scholar]
  8. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774[PubMed]
    [Google Scholar]
  9. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 2004
    [Google Scholar]
  10. Smibert RM, Krieg NR. Phenotypic characterisation. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 603–711
    [Google Scholar]
  11. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article][PubMed]
    [Google Scholar]
  12. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992; 72:315–321 [View Article]
    [Google Scholar]
  13. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64:839–845 [View Article][PubMed]
    [Google Scholar]
  14. Schumann P. Peptidoglycan Structure. In Fred R, Aharon O. (editors) Methods in Microbiology vol. 38 London: Academic Press; 2011 pp. 101–129
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp. 115–175
    [Google Scholar]
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  21. Khianngam S, Akaracharanya A, Tanasupawat S, Lee KC, Lee JS. Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil. Int J Syst Evol Microbiol 2009; 59:564–568 [View Article][PubMed]
    [Google Scholar]
  22. Yao R, Wang R, Wang D, Su J, Zheng S et al. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 2014; 64:805–811 [View Article][PubMed]
    [Google Scholar]
  23. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  24. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  25. O’Leary WM, Wilkinson SG. Gram-positive bacteria. In Ratledge C, Wilkinson SG. (editors) Microbial Lipids vol. 1 London: Academic Press; 1988 pp. 117–201
    [Google Scholar]
  26. Minnikin DE, Goodfellow M. Lipids in the classification of Bacillus and related taxa. In Berkeley RCW, Goodfellow M. (editors) The Aerobic Endospore-Forming Bacteria London: Academic Press; 1981
    [Google Scholar]
  27. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  28. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002523
Loading
/content/journal/ijsem/10.1099/ijsem.0.002523
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error