1887

Abstract

A rod-shaped, Gram-staining-negative, strictly aerobic, non-motile bacterium with no flexirubin-type pigment, designated as W201E, was isolated from an intertidal sandy beach in Antarctica. The organism formed faintly yellow, round colonies on marine agar 2216E. The strain required sea salts for growth and grew optimally in the presence of 2 % (w/v) NaCl at pH 7.0, 20 °C. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain W201E belonged to the genus and showed the highest sequence similarity to NBRC 102673 (96.5 %). The major respiratory quinone was menaquinone 6, and the predominant fatty acids were iso-C G, iso-C, iso-C 3-OH and summed feature 3 (which comprises C 7 and/or C 6). The polar lipids of strain W201E comprised one phosphatidylethanolamine, two unidentified aminolipids and three unidentified polar lipids. The DNA G+C content of strain W201E was 34.1 mol%. On the basis of the polyphasic analyses, this isolate was considered to represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is W201E (=KCTC 52693=MCCC 1K03251=CGMCC 1.16053).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002586
2018-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/795.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002586&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Bergey's Manual of Determinative Bacteriology, 1st ed. Baltimore: The Williams and Wilkins Co; 1923
    [Google Scholar]
  2. Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV. Flavobacterium maris sp. nov. isolated from shallow sediments of the Sea of Japan. Arch Microbiol 2015; 197:941–947 [View Article][PubMed]
    [Google Scholar]
  3. Liu Y, Jin JH, Zhou YG, Liu HC, Liu ZP. Flavobacterium caeni sp. nov., isolated from a sequencing batch reactor for the treatment of malachite green effluents. Int J Syst Evol Microbiol 2010; 60:417–421 [View Article][PubMed]
    [Google Scholar]
  4. Dong K, Chen F, du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense . Int J Syst Evol Microbiol 2013; 63:886–892 [View Article][PubMed]
    [Google Scholar]
  5. Fu Y, Tang X, Lai Q, Zhang C, Zhong H et al. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:205–209 [View Article][PubMed]
    [Google Scholar]
  6. Hatayama K, Ushida A, Kuno T. Flavobacterium aquicola sp. nov., isolated from river water. Int J Syst Evol Microbiol 2016; 66:2789–2796 [View Article][PubMed]
    [Google Scholar]
  7. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article][PubMed]
    [Google Scholar]
  8. Li DD, Liu C, Zhang YQ, Wang XJ, Wang N et al. Flavobacterium arcticum sp. nov., isolated from Arctic seawater. Int J Syst Evol Microbiol 2017; 67:1070–1074 [View Article][PubMed]
    [Google Scholar]
  9. Zhu L, Liu Q, Liu H, Zhang J, Dong X et al. Flavobacterium noncentrifugens sp. nov., a psychrotolerant bacterium isolated from glacier meltwater. Int J Syst Evol Microbiol 2013; 63:2032–2037 [View Article][PubMed]
    [Google Scholar]
  10. Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Sundaram S. Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. Int J Syst Evol Microbiol 2010; 60:2187–2192 [View Article][PubMed]
    [Google Scholar]
  11. Hwang WM, Kim D, Kang K, Ahn TY. Flavobacterium eburneum sp. nov., isolated from reclaimed saline land soil. Int J Syst Evol Microbiol 2017; 67:55–59 [View Article][PubMed]
    [Google Scholar]
  12. Nguyen TM, Kim J. Flavobacterium fulvum sp. nov., Flavobacterium pedocola sp. nov. and Flavobacterium humicola sp. nov., three new members of the family Flavobacteriaceae, isolated from soil. Int J Syst Evol Microbiol 2016; 66:3108–3118 [View Article][PubMed]
    [Google Scholar]
  13. Khianngam S, Akaracharanya A, Lee JS, Lee KC, Kim KW et al. Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil. Antonie van Leeuwenhoek 2014; 106:1239–1246 [View Article][PubMed]
    [Google Scholar]
  14. Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Domínguez L et al. Characterization of flavobacteria possibly associated with fish and fish farm environment. Description of three novel Flavobacterium species: Flavobacterium collinsii sp. nov., Flavobacterium branchiarum sp. nov., and Flavobacterium branchiicola sp. nov. Aquaculture 2013; 441:126–127 [Crossref]
    [Google Scholar]
  15. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol 2013; 63:3280–3286 [View Article][PubMed]
    [Google Scholar]
  16. Nedashkovskaya OI, Balabanova LA, Zhukova NV, Kim SJ, Bakunina IY et al. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. Arch Microbiol 2014; 196:745–752 [View Article][PubMed]
    [Google Scholar]
  17. Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N et al. Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2010; 60:344–348 [View Article][PubMed]
    [Google Scholar]
  18. Ausubel F, Brent R, Kingston R, Moore D, Seidman J et al. Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  19. Zhang Z, Yu T, Xu T, Zhang XH. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1991–1997 [View Article][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  24. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak TA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  25. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  26. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  27. Hsu SC, Lockwood JL. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 1975; 29:422–426[PubMed]
    [Google Scholar]
  28. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  30. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  32. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa . Arch Microbiol 1984; 137:247–249 [View Article]
    [Google Scholar]
  33. Komagata K, Suzuki KI. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207 [Crossref]
    [Google Scholar]
  34. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual vol. 1 Dodrecht, The Netherlands: Kluwer Academic Publishers; 1999 pp. 1–15
    [Google Scholar]
  35. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 1989; 479:297–306 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002586
Loading
/content/journal/ijsem/10.1099/ijsem.0.002586
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error