1887

Abstract

With the advent of molecular phylogenetic methods, it has become possible to assess the bioversity of snow algae more accurately. In this study, we focused on a morphological, ultrastructural and taxonomic description of a new -like alga isolated from snow in the High Arctic (Svalbard). Light and transmission electron microscopy revealed broad ellipsoidal or ellipsoidal–cylindrical, occasionally spherical cells with a chloroplast without a pyrenoid, an inconspicuous eyespot and a papilla. The size difference and the aforementioned morphological traits clearly distinguished the alga from its closest counterparts within the genus . Moreover, we were able to cultivate the alga at both 5 and 20 °C, revealing the psychrotolerant nature of the strain. Phylogenetic analyses of the plastid L and nuclear 18S rRNA gene showed that the alga is nested within a clade containing a number of psychrotolerant strains within the phylogroup (Chlorophyceae). In the L phylogeny, the alga formed an independent lineage, sister to the freshwater species . Comparisons of secondary structure models of a highly variable ITS2 rDNA marker showed support for a distinct species identity for the new strain. The ITS2 secondary structure of the new isolate differed from the closest matches ‘ and by three and five compensatory base changes, respectively. Considering the morphological and molecular differences from its closest relatives, a new psychrotolerant species from the Arctic, sp. nov., is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002595
2018-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/851.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002595&mimeType=html&fmt=ahah

References

  1. Liu C, Huang X, Wang X, Zhang X, Li G. Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics. Phycologia 2006; 45:190–198 [View Article]
    [Google Scholar]
  2. Possmayer M, Gupta RK, Szyszka-Mroz B, Maxwell DP, Lachance MA et al. Resolving the phylogenetic relationship between Chlamydomonas sp. UWO 241 and Chlamydomonas raudensis SAG 49.72 (Chlorophyceae) with nuclear and plastid DNA sequences. J Phycol 2016; 52:305–310 [View Article][PubMed]
    [Google Scholar]
  3. Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat Commun 2016; 7:11968 [View Article][PubMed]
    [Google Scholar]
  4. Matsuzaki R, Kawai-Toyooka H, Hara Y, Nozaki H. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae). Phycologia 2015; 54:491–502 [View Article]
    [Google Scholar]
  5. Procházková L, Remias D, Řezanka T, Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia). Fottea 2018; 18:1–18
    [Google Scholar]
  6. Nakada T, Misawa K, Nozaki H. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol Phylogenet Evol 2008; 48:281–291 [View Article][PubMed]
    [Google Scholar]
  7. Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH. A combined 18S rDNA and rbcL phylogenetic analyses of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J Phycol 2002; 38:1051–1064 [View Article]
    [Google Scholar]
  8. Pröschold T, Marin B, Schlösser UG, Melkonian M. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 2001; 152:265–300 [View Article][PubMed]
    [Google Scholar]
  9. Remias D, Wastian H, Lütz C, Leya T. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct Sci 2013; 25:648–656 [View Article]
    [Google Scholar]
  10. Leya T. Snow algae: adaptation strategies to survive on snow and ice. In Seckbach J, Oren A, Stan-Lotter H. (editors) Cellular Origin, Life in Extreme Habitats and Astrobiology, volume 27, Polyextremophiles: Life Under Multiple Forms of Stress Dordrecht: Springer; 2013 pp. 401–423
    [Google Scholar]
  11. Hoham RW, Berman JD, Rogers HS, Felio JH, Ryba JB et al. Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia 2006; 45:319–330 [View Article]
    [Google Scholar]
  12. Muramoto K, Nakada T, Shitara T, Hara Y, Nozaki H. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. Eur J Phycol 2010; 45:27–37 [View Article]
    [Google Scholar]
  13. Matsuzaki R, Hara Y, Nozaki H. A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material. Phycologia 2014; 53:293–304 [View Article]
    [Google Scholar]
  14. Hoham RW, Roemer SC, Mullet JE. The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia 1979; 18:55–70 [View Article]
    [Google Scholar]
  15. Ling HU, Seppelt RD. Snow algae of the Windmill Islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow. Eur J Phycol 1993; 28:77–84 [View Article]
    [Google Scholar]
  16. Bischoff HW, Bold HC. Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Univ Texas Publ 1963; 6318:1–95
    [Google Scholar]
  17. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis M, Gelfand D, Sninsky J, White T. (editors) PCR Protocols: a Guide to Methods and Applications Orlando, FL: Academic Press; 1990 pp. 315–322
    [Google Scholar]
  18. Keith Hamby R, Sims L, Issel L, Zimmer E. Direct ribosomal RNA sequencing: Optimization of extraction and sequencing methods for work with higher plants. Plant Mol Biol Report 1988; 6:175–192 [View Article]
    [Google Scholar]
  19. Pazoutova M, Skaloud P, Nemjova K. Phylogenetic position of Ooplanctella planoconvexa gen. et comb. nova and Echinocoleum elegans (Oocystaceae, Trebouxiophyceae, Chlorophyta). Fottea 2010; 10:75–82 [View Article]
    [Google Scholar]
  20. Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H et al. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 2012; 79:638–648 [View Article][PubMed]
    [Google Scholar]
  21. Friedl T. Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inferences from nuclear-encoded ribosomal DNA sequences and motile cell ultrastructure. Phycologia 1996; 35:456–469 [View Article]
    [Google Scholar]
  22. Mikhailyuk TI, Sluiman HJ, Massalski A, Mudimu O, Demchenko EM et al. New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). J Phycol 2008; 44:1586–1603 [View Article][PubMed]
    [Google Scholar]
  23. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  24. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008; 9:286–298 [View Article][PubMed]
    [Google Scholar]
  25. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  26. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol 2008; 25:1253–1256 [View Article][PubMed]
    [Google Scholar]
  27. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008; 57:758–771 [View Article][PubMed]
    [Google Scholar]
  28. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article][PubMed]
    [Google Scholar]
  29. Rambaut A 2007; FigTree,a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree
  30. Schultz J, Müller T, Achtziger M, Seibel PN, Dandekar T et al. The internal transcribed spacer 2 database – a web server for (not only) low level phylogenetic analyses. Nucleic Acids Res 2006; 34:W704–W707 [View Article][PubMed]
    [Google Scholar]
  31. Selig C, Wolf M, Müller T, Dandekar T, Schultz J. The ITS2 Database II: homology modelling RNA structure for molecular systematics. Nucleic Acids Res 2008; 36:D377–D380 [View Article][PubMed]
    [Google Scholar]
  32. Keller A, Schleicher T, Schultz J, Müller T, Dandekar T et al. 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 2009; 430:50–57 [View Article][PubMed]
    [Google Scholar]
  33. Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B et al. The ITS2 Database III – sequences and structures for phylogeny. Nucleic Acids Res 2010; 38:D275–D279 [View Article][PubMed]
    [Google Scholar]
  34. Koetschan C, Hackl T, Müller T, Wolf M, Förster F et al. ITS2 database IV: interactive taxon sampling for internal transcribed spacer 2 based phylogenies. Mol Phylogenet Evol 2012; 63:585–588 [View Article][PubMed]
    [Google Scholar]
  35. Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11:129 [View Article][PubMed]
    [Google Scholar]
  36. Darty K, Denise A, Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009; 25:1974–1975 [View Article][PubMed]
    [Google Scholar]
  37. Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M. 4SALE – a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 2006; 7:498 [View Article][PubMed]
    [Google Scholar]
  38. Seibel PN, Müller T, Dandekar T, Wolf M. Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res Notes 2008; 1:91 [View Article][PubMed]
    [Google Scholar]
  39. Wolf M, Chen S, Song J, Ankenbrand M, Müller T. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences –a proof of concept. PLoS One 2013; 8:e66726 [View Article][PubMed]
    [Google Scholar]
  40. Matsuzaki R, Hara Y, Nozaki H. A taxonomic revision of Chloromonas reticulata (Volvocales, Chlorophyceae), the type species of the genus Chloromonas, based on multigene phylogeny and comparative light and electron microscopy. Phycologia 2012; 51:74–85 [View Article]
    [Google Scholar]
  41. Leya T. Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens Doktorarbeit; 2004
    [Google Scholar]
  42. Kvíderová J. Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Rep 2012; 2:8–19 [View Article]
    [Google Scholar]
  43. Brown SP, Ungerer MC, Jumpponen A. A community of clones: Snow algae are diverse communities of spatially structured clones. Int J Plant Sci 2016; 177:432–439 [View Article]
    [Google Scholar]
  44. Lukeš M, Procházková L, Shmidt V, Nedbalová L, Kaftan D. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae). FEMS Microbiol Ecol 2014; 89:303–315 [View Article][PubMed]
    [Google Scholar]
  45. Vincent WF. Microbial ecosystem responses to rapid climate change in the Arctic. ISME J 2010; 4:1087–1090 [View Article][PubMed]
    [Google Scholar]
  46. Bradley JA, Singarayer JS, Anesio AM. Microbial community dynamics in the forefield of glaciers. Proc Biol Sci 2014; 281:20140882 [View Article][PubMed]
    [Google Scholar]
  47. Stibal M. Ecological and physiological characteristics of snow algae from Czech and Slovak mountains. Czech Phycol 2003; 3:141–152
    [Google Scholar]
  48. Hoham RW, Mullet JE. The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales). Phycologia 1977; 16:53–68 [View Article]
    [Google Scholar]
  49. Ettl H. Die Gattung Chloromonas Gobi emend. Wille (Chlamydomonas und Die Nächstverwandten Gattungen I). Nova Hedwigia Beihefte 1970; 34:1–283
    [Google Scholar]
  50. Ettl H. Chlorophyta I. Phytomonadina. In Ettl H, Gerloff J, Heynig H, Mollenhauer D. (editors) Süßwasserflora von Mitteleuropa Jena: Gustav Fischer Verlag; 1983
    [Google Scholar]
  51. Remias D, Karsten U, Lütz C, Leya T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 2010; 243:73–86 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002595
Loading
/content/journal/ijsem/10.1099/ijsem.0.002595
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error