1887

Abstract

A non-motile, proteorhodopsin-containing, yellow and rod-shaped bacterial strain, designated ZODW10, was isolated from the seaweed collected from the West Sea, Republic of Korea. Cells were Gram-stain-negative, aerobic and non-motile. The isolate required sea salts for growth. A carotenoid pigment was produced. A phylogenetic tree based on 16S rRNA gene sequences showed that strain ZODW10 forms an evolutionary lineage within the radiation enclosing members of the genus with CIP 108745 (96.7 % sequence similarity) as its nearest neighbour. The major fatty acids were iso-C, iso-C 3-OH and iso-C G. Strain ZODW10 contained menaquinone 6 (MK-6) and phosphatidylethanolamine, an unidentified aminolipid and an unidentified polar lipid as the only isoprenoid quinone and the major polar lipids, respectively. The DNA G+C content of strain ZODW10 was 36 mol%. On the basis of the present polyphasic characterization, it is suggested that the isolate represents a novel species of the genus , for which the name sp. nov. (type strain, ZODW10=KCTC 52953=JCM 32293) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002607
2018-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/899.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002607&mimeType=html&fmt=ahah

References

  1. Yoon JH, Kang SJ, Lee CH, Oh TK. Dokdonia donghaensis gen. nov., sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2005; 55:2323–2328 [View Article][PubMed]
    [Google Scholar]
  2. Khan ST, Nakagawa Y, Harayama S. Krokinobacter gen. nov., with three novel species, in the family Flavobacteriaceae . Int J Syst Evol Microbiol 2006; 56:323–328 [View Article][PubMed]
    [Google Scholar]
  3. Yoon JH, Kang SJ, Park S, Oh TK. Reclassification of the three species of the genus Krokinobacter into the genus Dokdonia as Dokdonia genika comb. nov., Dokdonia diaphoros comb. nov. and Dokdonia eikasta comb. nov., and emended description of the genus Dokdonia Yoon et al. 2005. Int J Syst Evol Microbiol 2012; 62:1896–1901 [View Article][PubMed]
    [Google Scholar]
  4. Choi S, Kang JW, Lee JH, Seong CN. Dokdonia lutea sp. nov., isolated from Sargassum fulvellum seaweed. Int J Syst Evol Microbiol 2017; 67:4482–4486 [View Article][PubMed]
    [Google Scholar]
  5. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245 [View Article][PubMed]
    [Google Scholar]
  6. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  7. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  8. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Department of Genetics, University of Washington, Seattle, USA: 1993
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  13. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132 [Crossref]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  15. Zobell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 1941; 4:42–75
    [Google Scholar]
  16. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758[PubMed]
    [Google Scholar]
  17. Yamaguchi S, Yokoe M. A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 2000; 66:3337–3343 [View Article][PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  19. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology Press; 2007 pp. 335–386
    [Google Scholar]
  20. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [Crossref]
    [Google Scholar]
  21. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  22. Yoshizawa S, Kawanabe A, Ito H, Kandori H, Kogure K. Diversity and functional analysis of proteorhodopsin in marine Flavobacteria . Environ Microbiol 2012; 14:1240–1248 [View Article][PubMed]
    [Google Scholar]
  23. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496[PubMed] [Crossref]
    [Google Scholar]
  24. CLSI Performance Standards for Antimicrobial Susceptibility Testing 19th Informational Supplement. CLSI document M100-S19 (ISBN 1–56238–690–5) Wayne, PA: Clinical and Laboratory Standards Institute; 2009
    [Google Scholar]
  25. Klassen JL, Foght JM. Differences in carotenoid composition among hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 2008; 74:2016–2022 [View Article][PubMed]
    [Google Scholar]
  26. Teramoto M, Nishijima M. Flavicella marina gen. nov., sp. nov., a carotenoid-producing bacterium from surface seawater. Int J Syst Evol Microbiol 2015; 65:799–804 [View Article][PubMed]
    [Google Scholar]
  27. Kim K, Kwon SK, Yoon JH, Kim JF. Complete genome sequence of the proteorhodopsin-containing marine Flavobacterium Dokdonia donghaensis DSW-1T, isolated from seawater off Dokdo in the East Sea (Sea of Korea). Genome Announc 2016; 4:e00804-16 [View Article][PubMed]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  29. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  30. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons Ltd; 1994 pp. 265–309
    [Google Scholar]
  31. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5:109–118 [View Article][PubMed]
    [Google Scholar]
  32. Zhang Z, Gao X, Wang L, Zhang XH. Dokdonia pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2015; 65:2222–2226 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002607
Loading
/content/journal/ijsem/10.1099/ijsem.0.002607
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error