1887

Abstract

A Gram-stain-negative, rod-shaped, red-pigmented, aerobic bacterium, strain M2, was isolated from a seawater sample collected from the western Pacific Ocean at a depth of 1000 m and characterized using polyphasic taxonomy. Strain M2 was catalase-positive and oxidase-negative. Cells grew at 4–33 °C (optimum, 25 °C), at pH 6–9 (optimum, 7) and with 0–4 % (w/v) (optimum, 1 %) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain M2 was associated with the genus . Strain M2 showed the highest 16S rRNA gene sequence similarities to CCUG 39621 (95.7 %), XTM003 (95.6 %) and Tibet-IIU11 (95.2 %). The DNA G+C content was 59.98 mol%. Strain M2 contained Cω5 (25.0 %), iso-C (23.9 %) and summed feature 3 (Cω6 and/or Cω7, 20.4 %) as major cellular fatty acids. The major quinone of strain M2 was menaquinone 7 and the major polar lipid was phosphatidylethanolamine. The major polyamine of strain M2 was -homospermidine. The phylogenetic analysis and physiological and biochemical data showed that strain M2 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is M2 (=CCTCC AB 2017185=KCTC 62120).

Keyword(s): deep-sea , Hymenobacter and red-pigmented
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002621
2018-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/947.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002621&mimeType=html&fmt=ahah

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article][PubMed]
    [Google Scholar]
  2. Órdenes-Aenishanslins N, Anziani-Ostuni G, Vargas-Reyes M, Alarcón J, Tello A et al. Pigments from UV-resistant Antarctic bacteria as photosensitizers in dye sensitized solar cells. J Photochem Photobiol B 2016; 162:707–714 [View Article][PubMed]
    [Google Scholar]
  3. Liu K, Liu Y, Wang N, Gu Z, Shen L et al. Hymenobacter glacieicola sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2016; 66:3793–3798 [View Article][PubMed]
    [Google Scholar]
  4. Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M. Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 2016; 66:4821–4825 [View Article][PubMed]
    [Google Scholar]
  5. Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse HJ et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 2017; 67:1975–1983 [View Article][PubMed]
    [Google Scholar]
  6. Kim MC, Kim CM, Kang OC, Zhang Y, Liu Z et al. Hymenobacter rutilus sp. nov., isolated from marine sediment in the Arctic. Int J Syst Evol Microbiol 2017; 67:856–861 [View Article][PubMed]
    [Google Scholar]
  7. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 2000; 50:731–734 [View Article][PubMed]
    [Google Scholar]
  8. Dai J, Wang Y, Zhang L, Tang Y, Luo X et al. Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 2009; 32:543–548 [View Article][PubMed]
    [Google Scholar]
  9. Zhang G, Niu F, Busse HJ, Ma X, Liu W et al. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai–Tibet Plateau permafrost region. Int J Syst Evol Microbiol 2008; 58:1215–1220 [View Article][PubMed]
    [Google Scholar]
  10. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  11. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  12. Buczolits S, Denner EB, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56:2071–2078 [View Article][PubMed]
    [Google Scholar]
  13. Lee JJ, Srinivasan S, Lim S, Joe M, Lee SH et al. Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil. Curr Microbiol 2014; 68:305–310 [View Article][PubMed]
    [Google Scholar]
  14. Zhang Q, Liu C, Tang Y, Zhou G, Shen P et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2007; 57:1752–1756 [View Article][PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  20. Hwang CY, Zhang GI, Kang SH, Kim HJ, Cho BC. Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidicola . Int J Syst Evol Microbiol 2009; 59:3019–3024 [View Article][PubMed]
    [Google Scholar]
  21. Xu JL, Liu QM, Yu HS, Jin FX, Lee ST et al. Hymenobacter daecheongensis sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 2009; 59:1183–1187 [View Article][PubMed]
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  23. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  24. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366 [Crossref]
    [Google Scholar]
  25. Kates M. Techniques of Lipidology Amsterdam: Elsevier; 1986
    [Google Scholar]
  26. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  27. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002621
Loading
/content/journal/ijsem/10.1099/ijsem.0.002621
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error