1887

Abstract

A Gram-stain-negative, aerobic, non-motile and coccoid or ovoid bacterial strain, designated LB2, was isolated from a Korean foodstuff, salted pollack. Strain LB2 grew optimally at 25–30 °C, at pH 7.0–8.0 and in the presence of 0–2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain LB2 belonged to the genus , coherently clustering with the type strain of . Strain LB2 exhibited 16S rRNA gene sequence similarity values of 98.0 and 97.0 % to the type strains of and , respectively, and of less than 96.9 % to the type strains of other species. Strain LB2 contained Q-10 as the predominant ubiquinone. Major fatty acids of strain LB2 were cyclo C 8, C 7 and C (when grown on MA) or C 7 and C (on TSA). The major polar lipids detected in strain LB2 were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified glycolipid. The DNA G+C content of strain LB2 was 61.4 mol% and its DNA–DNA relatedness values with the type strains of and were 26 and 18 %, respectively. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain LB2 is separated from recognized species. On the basis of the data presented, strain LB2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LB2 (=KCTC 62138=NBRC 113023).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002658
2018-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1238.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002658&mimeType=html&fmt=ahah

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19:375–390 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  3. Yan ZF, Moya G, Lin P, Won KH, Yang JE et al. Paracoccus hibisci sp. nov., isolated from the rhizosphere of Hibiscus syriacus L. (Mugunghwa flower). Int J Syst Evol Microbiol 2017; 67:1849–1854 [View Article][PubMed]
    [Google Scholar]
  4. Lin P, Yan ZF, Won KH, Yang JE, Li CT et al. Paracoccus hibiscisoli sp. nov., isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Int J Syst Evol Microbiol 2017; 67:2452–2458 [View Article][PubMed]
    [Google Scholar]
  5. Xue H, Piao CG, Guo MW, Wang LF, Li Y. Paracoccus aerius sp. nov., isolated from air. Int J Syst Evol Microbiol 2017; 67:2586–2591 [View Article][PubMed]
    [Google Scholar]
  6. Chen WM, Li YS, Young CC, Sheu SY. Paracoccus mangrovi sp. nov., isolated from a mangrove. Int J Syst Evol Microbiol 2017; 67:2689–2695 [View Article][PubMed]
    [Google Scholar]
  7. Singh AK, Kohli P, Mahato NK, Lal R. Paracoccus sordidisoli sp. nov., isolated from an agricultural field contaminated with hexachlorocyclohexane isomers. Int J Syst Evol Microbiol 2017; 67:4365–4371 [View Article][PubMed]
    [Google Scholar]
  8. Park S, Choi J, Choi SJ, Yoon JH. Paracoccus litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:4760–4766 [View Article][PubMed]
    [Google Scholar]
  9. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000; 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  10. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  11. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  12. Liu XY, Wang BJ, Jiang CY, Liu SJ. Paracoccus sulfuroxidans sp. nov., a sulfur oxidizer from activated sludge. Int J Syst Evol Microbiol 2006; 56:2693–2695 [View Article][PubMed]
    [Google Scholar]
  13. Liu ZP, Wang BJ, Liu XY, Dai X, Liu YH et al. Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 2008; 58:257–261 [View Article][PubMed]
    [Google Scholar]
  14. Khan ST, Takaichi S, Harayama S. Paracoccus marinus sp. nov., an adonixanthin diglucoside-producing bacterium isolated from coastal seawater in Tokyo Bay. Int J Syst Evol Microbiol 2008; 58:383–386 [View Article][PubMed]
    [Google Scholar]
  15. Li HF, Qu JH, Yang JS, Li ZJ, Yuan HL. Paracoccus chinensis sp. nov., isolated from sediment of a reservoir. Int J Syst Evol Microbiol 2009; 59:2670–2674 [View Article][PubMed]
    [Google Scholar]
  16. Roh SW, Nam YD, Chang HW, Kim KH, Kim MS et al. Paracoccus aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2009; 59:790–794 [View Article][PubMed]
    [Google Scholar]
  17. Kim YO, Kong HJ, Park S, Kang SJ, Kim KK et al. Paracoccus fistulariae sp. nov., a lipolytic bacterium isolated from bluespotted cornetfish, Fistularia commersonii . Int J Syst Evol Microbiol 2010; 60:2908–2912 [View Article][PubMed]
    [Google Scholar]
  18. Sheu SY, Jiang SR, Chen CA, Wang JT, Chen WM. Paracoccus stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata . Int J Syst Evol Microbiol 2011; 61:2221–2226 [View Article][PubMed]
    [Google Scholar]
  19. Lee MJ, Lee SS. Paracoccus limosus sp. nov., isolated from activated sludge in a sewage treatment plant. Int J Syst Evol Microbiol 2013; 63:1311–1316 [View Article][PubMed]
    [Google Scholar]
  20. Nguyen NL, Kim YJ, Hoang VA, Tran BT, Pham HS et al. Paracoccus panacisoli sp. nov., isolated from a forest soil cultivated with Vietnamese ginseng. Int J Syst Evol Microbiol 2015; 65:1491–1497 [View Article][PubMed]
    [Google Scholar]
  21. Dominguez-Moñino I, Jurado V, Hermosin B, Saiz-Jimenez C. Paracoccus cavernae sp. nov., isolated from a show cave. Int J Syst Evol Microbiol 2016; 66:2265–2270 [View Article][PubMed]
    [Google Scholar]
  22. Zhang S, Gan L, Qin Q, Long X, Zhang Y et al. Paracoccusacridae sp. nov., isolated from the insect Acrida cinerea living in deserted cropland. Int J Syst Evol Microbiol 2016; 66:3492–3497 [View Article][PubMed]
    [Google Scholar]
  23. Kämpfer P, Aurass P, Karste S, Flieger A, Glaeser SP. Paracoccus contaminans sp. nov., isolated from a contaminated water microcosm. Int J Syst Evol Microbiol 2016; 66:5101–5105 [View Article][PubMed]
    [Google Scholar]
  24. Park S, Yoon SY, Jung YT, Won SM, Park DS et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2992–2998 [View Article][PubMed]
    [Google Scholar]
  25. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  26. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  27. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  28. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  29. Barrow GI, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [Crossref]
    [Google Scholar]
  30. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981 pp. 1302–1331
    [Google Scholar]
  31. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article][PubMed]
    [Google Scholar]
  32. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942[PubMed]
    [Google Scholar]
  33. Yoon JH, Kim H, Kim SB, Kim HJ, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46:502–505 [View Article]
    [Google Scholar]
  34. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [View Article]
    [Google Scholar]
  35. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53:53–57 [View Article][PubMed]
    [Google Scholar]
  36. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  37. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  40. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp. 121–161
    [Google Scholar]
  41. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  42. Kelly DP, Rainey FA, Wood AP. The genus Paracoccus . In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, 3rd ed. vol. 5 New York: Springer; 2006 pp. 232–249 [Crossref]
    [Google Scholar]
  43. Jung YT, Park S, Lee JS, Yoon JH. Paracoccus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2763–2769 [View Article][PubMed]
    [Google Scholar]
  44. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  45. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002658
Loading
/content/journal/ijsem/10.1099/ijsem.0.002658
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error