1887

Abstract

A Gram-stain-negative, aerobic, motile and rod-shaped or ovoid bacterial strain, designated JDTF-40, was isolated from a tidal flat in Jindo, an island of the Republic of South Korea. Strain JDTF-40 grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain JDTF-40 fell within the cluster comprising the type strains of species. Strain JDTF-40 exhibited 16S rRNA gene sequence similarity values of 93.8–95.7 % to the type strains of species. Strain JDTF-40 contained Q-8 as the predominant ubiquinone and summed feature 3 (C 7 and/or C 6) and C as the major fatty acids. The major polar lipids of strain JDTF-40 were phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid, one unidentified glycolipid and three unidentified lipids. The DNA G+C content of strain JDTF-40 was 41.3 mol%. Differential phenotypic properties, together with the phylogenetic distinctiveness, demonstrated that strain JDTF-40 is distinct from recognized species of the genus . On the basis of the data presented here, strain JDTF-40 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JDTF-40 (=KACC 19433=KCTC 62186=NBRC 113040).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002671
2018-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1321.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002671&mimeType=html&fmt=ahah

References

  1. Zhang Y, Tang K, Shi X, Zhang XH. Description of Thalassotalea piscium gen. nov., sp. nov., isolated from flounder (Paralichthys olivaceus), reclassification of four species of the genus Thalassomonas as members of the genus Thalassotalea gen. nov. and emended description of the genus Thalassomonas . Int J Syst Evol Microbiol 2014; 64:1223–1228 [View Article][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  3. Park S, Jung YT, Kang CH, Park JM, Yoon JH. Thalassotalea ponticola sp. nov., isolated from seawater, reclassification of Thalassomonas fusca as Thalassotalea fusca comb. nov. and emended description of the genus Thalassotalea . Int J Syst Evol Microbiol 2014; 64:3676–3682 [View Article][PubMed]
    [Google Scholar]
  4. Choi S, Shin SK, Kim E, Yi H. Thalassotalea crassostreae sp. nov., isolated from Pacific oyster. Int J Syst Evol Microbiol 2017; 67:988–992 [View Article][PubMed]
    [Google Scholar]
  5. Kang H, Kim H, Nam IY, Joung Y, Jang TY et al. Thalassotalea litorea sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2017; 67:2268–2273 [View Article][PubMed]
    [Google Scholar]
  6. Liu J, Sun YW, Li SN, Zhang DC. Thalassotalea profundi sp. nov. isolated from a deep-sea seamount. Int J Syst Evol Microbiol 2017; 67:3739–3743 [View Article][PubMed]
    [Google Scholar]
  7. Wang Y, Liu T, Ming H, Sun P, Cao C et al. Thalassotalea atypica sp. nov., isolated from seawater, and emended description of Thalassotalea eurytherma . Int J Syst Evol Microbiol 2018; 68:271–276 [View Article][PubMed]
    [Google Scholar]
  8. Sheu SY, Liu LP, Tang SL, Chen WM. Thalassotalea euphylliae sp. nov., isolated from the torch coral Euphyllia glabrescens . Int J Syst Evol Microbiol 2016; 66:5039–5045 [View Article][PubMed]
    [Google Scholar]
  9. Yi H, Bae KS, Chun J. Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54:377–380 [View Article][PubMed]
    [Google Scholar]
  10. Thompson FL, Barash Y, Sawabe T, Sharon G, Swings J et al. Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol 2006; 56:365–368 [View Article][PubMed]
    [Google Scholar]
  11. Jean WD, Shieh WY, Liu TY. Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas . Int J Syst Evol Microbiol 2006; 56:1245–1250 [View Article][PubMed]
    [Google Scholar]
  12. Park S, Choi WC, Oh TK, Yoon JH. Thalassomonas agariperforans sp. nov., an agarolytic bacterium isolated from marine sand. Int J Syst Evol Microbiol 2011; 61:2573–2576 [View Article][PubMed]
    [Google Scholar]
  13. Jung YT, Park S, Yoon JH. Thalassomonas fusca sp. nov., a novel gammaproteobacterium isolated from tidal flat sediment. Antonie van Leeuwenhoek 2014; 105:81–87 [View Article][PubMed]
    [Google Scholar]
  14. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014; 64:2079–2083 [View Article][PubMed]
    [Google Scholar]
  15. Hou TT, Liu Y, Zhong ZP, Liu HC, Liu ZP. Thalassotalea marina sp. nov., isolated from a marine recirculating aquaculture system, reclassification of Thalassomonas eurytherma as Thalassotalea eurytherma comb. nov. and emended description of the genus Thalassotalea . Int J Syst Evol Microbiol 2015; 65:4710–4715 [View Article][PubMed]
    [Google Scholar]
  16. Chen WM, Liu LP, Chen CA, Wang JT, Sheu SY. Thalassotalea montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata . Int J Syst Evol Microbiol 2016; 66:4077–4084 [View Article][PubMed]
    [Google Scholar]
  17. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  18. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  19. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [Crossref]
    [Google Scholar]
  20. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  21. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981 pp. 1302–1331
    [Google Scholar]
  22. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article][PubMed]
    [Google Scholar]
  23. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942[PubMed]
    [Google Scholar]
  24. Yoon JH, Kim H, Kim SB, Kim HJ, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46:502–505 [View Article]
    [Google Scholar]
  25. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [View Article]
    [Google Scholar]
  26. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH et al. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53:53–57 [View Article][PubMed]
    [Google Scholar]
  27. Komagata K, Suzuki KI. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp. 121–161
    [Google Scholar]
  31. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  32. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002671
Loading
/content/journal/ijsem/10.1099/ijsem.0.002671
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error