1887

Abstract

A novel actinomycete, designated strain NW8-21, was isolated from mountain soil in Mae-Wong National Park, Nakornsawan province, Thailand, and was taxonomically characterized by using a polyphasic approach. Based on 16S rRNA gene sequence analysis, the strain was revealed to have the closest similarity to YIM 56035 with the highest 16S rRNA gene sequence similarity value of 98.7 %, followed by KLBMP 1282 (98.0 %). The chemotaxonomic properties, i.e. arabinose and galactose as the diagnostic reducing sugar in cells, MK-8 (H) as a major menaquinone, iso-C as the main cellular fatty acid component and phosphatidylethanolamine, phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol, phosphatidylcholine as the characteristic phospholipids, confirmed a taxonomic affiliation of the strain that was consistent with those of the genus . Several phenotypic differences and the DNA–DNA hybridization results (less than 40 % relatedness value) indicated that strain NW8-21 shoud be considered to represent a novel species of the genus , for which the name is proposed. The type strain is strain NW8-21 (=BCC 58125=NBRC 109519).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002672
2018-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1307.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002672&mimeType=html&fmt=ahah

References

  1. Henssen A. Beiträge zur morphologie und systematik der thermophilen actinomyceten. Arch Microbiol 1957; 26:373–414
    [Google Scholar]
  2. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58:1–26 [View Article][PubMed]
    [Google Scholar]
  3. Li S, Tian X, Niu S, Zhang W, Chen Y et al. Pseudonocardians A-C, new diazaanthraquinone derivatives from a deap-sea actinomycete Pseudonocardia sp. SCSIO 01299. Mar Drugs 2011; 9:1428–1439 [View Article][PubMed]
    [Google Scholar]
  4. Prabahar V, Dube S, Reddy GS, Shivaji S. Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica. Syst Appl Microbiol 2004; 27:66–71 [View Article][PubMed]
    [Google Scholar]
  5. Tian XP, Long LJ, Li SM, Zhang J, Xu Y et al. Pseudonocardia antitumoralis sp. nov., a deoxynyboquinone-producing actinomycete isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2013; 63:893–899 [View Article][PubMed]
    [Google Scholar]
  6. Sahin N, Veyisoglu A, Tatar D, Spröer C, Cetin D et al. Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1703–1711 [View Article][PubMed]
    [Google Scholar]
  7. Lee SD, Kim ES, Min KL, Lee WY, Kang SO et al. Pseudonocardia kongjuensis sp. nov., isolated from a gold mine cave. Int J Syst Evol Microbiol 2001; 51:1505–1510 [View Article][PubMed]
    [Google Scholar]
  8. Trujillo ME, Idris H, Riesco R, Nouioui I, Igual JM et al. Pseudonocardia nigra sp. nov., isolated from Atacama Desert rock. Int J Syst Evol Microbiol 2017; 67:2980–2985 [View Article][PubMed]
    [Google Scholar]
  9. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65:501–509 [View Article]
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  11. Waksman SA. The Actinomycetes, Vol. 2, Classification, Identification and Description of Genera and Species Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  12. Kelly KL. Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  13. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  14. Williams ST, Cross T. Actinomycetes. In Booth C. (editor) Methods in Microbiology vol. 4 London: Academic Press; 1971 pp. 295–334
    [Google Scholar]
  15. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  17. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  18. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30:131–134 [View Article]
    [Google Scholar]
  19. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  22. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  23. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88:200–204 [View Article][PubMed]
    [Google Scholar]
  24. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  25. Tamaoka J. Determination of DNA base composition. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp. 463–470
    [Google Scholar]
  26. Thawai C. Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus . Int J Syst Evol Microbiol 2015; 65:1456–1461 [View Article][PubMed]
    [Google Scholar]
  27. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  28. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  29. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  30. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a Specific Tree Topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  36. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  37. Huang Y, Goodfellow M. Pseudonocardia. Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp. 1–32
    [Google Scholar]
  38. Schäfer J, Busse HJ, Kämpfer P. Pseudonocardia parietis sp. nov., from the indoor environment. Int J Syst Evol Microbiol 2009; 59:2449–2452 [View Article][PubMed]
    [Google Scholar]
  39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002672
Loading
/content/journal/ijsem/10.1099/ijsem.0.002672
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error