1887

Abstract

A non-motile, orange-coloured and rod-shaped bacterial strain, designated strain ZOW29, was isolated from a seaweed sample collected from the South Sea, Republic of Korea. Cells were Gram-stain-negative, aerobic and non-motile. The isolate required sea salts for growth. Carotenoid pigment was produced. A phylogenetic tree based on 16S rRNA gene sequences showed that strain ZOW29 forms an evolutionary lineage within the radiation enclosing the members of the genus with MSKK-32, PMA-26and DSW-1 (97.1 % sequence similarity each) as its nearest neighbours. The DNA–DNA relatedness values between strain ZOW29 and these four type strains were 35–48 %. The major fatty acids were iso-C, iso-C 3-OH and iso-C G. Strain ZOW29 contained MK-6 and phosphatidylethanolamine, an unidentified aminolipid and an unidentified polar lipid as the only isoprenoid quinone and the major polar lipids, respectively. The DNA G+C content of strain ZOW29 was 38 mol%. On the basis of polyphasic characterization, it is suggested that the isolate represents a novel species of the genus , for which the name sp. nov. (type strain, ZOW29=KCTC 52956=JCM 32295) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002730
2018-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1697.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002730&mimeType=html&fmt=ahah

References

  1. Yoon JH, Kang SJ, Lee CH, Oh TK. Dokdonia donghaensis gen. nov., sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2005; 55:2323–2328 [View Article][PubMed]
    [Google Scholar]
  2. Khan ST, Nakagawa Y, Harayama S. Krokinobacter gen. nov., with three novel species, in the family Flavobacteriaceae . Int J Syst Evol Microbiol 2006; 56:323–328 [View Article][PubMed]
    [Google Scholar]
  3. Yoon JH, Kang SJ, Park S, Oh TK. Reclassification of the three species of the genus Krokinobacter into the genus Dokdonia as Dokdonia genika comb. nov., Dokdonia diaphoros comb. nov. and Dokdonia eikasta comb. nov., and emended description of the genus Dokdonia Yoon et al. 2005. Int J Syst Evol Microbiol 2012; 62:1896–1901 [View Article][PubMed]
    [Google Scholar]
  4. Choi S, Kang JW, Lee JH, Seong CN. Dokdonia lutea sp. nov., isolated from Sargassum fulvellum seaweed. Int J Syst Evol Microbiol 2017; 67:4482–4486 [View Article][PubMed]
    [Google Scholar]
  5. Zhang Z, Gao X, Wang L, Zhang XH. Dokdonia pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2015; 65:2222–2226 [View Article][PubMed]
    [Google Scholar]
  6. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245 [View Article][PubMed]
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  8. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  9. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  10. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Department of Genetics, University of Washington, Seattle, USA; 1993
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  14. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132 [Crossref]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  16. Lee JS, Lee KC, Pyun YR, Bae KS. Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol 2003; 53:1277–1280 [View Article][PubMed]
    [Google Scholar]
  17. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
  18. ZoBell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 1941; 4:42–75
    [Google Scholar]
  19. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758[PubMed]
    [Google Scholar]
  20. Yamaguchi S, Yokoe M. A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 2000; 66:3337–3343 [View Article][PubMed]
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  22. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology Press; 2007 pp. 335–386
    [Google Scholar]
  23. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [Crossref]
    [Google Scholar]
  24. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  25. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article][PubMed]
    [Google Scholar]
  26. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 19th Informational Supplement. CLSI document M100-S19 (ISBN 1–56238–690–5) Wayne, PA: Clinical and Laboratory Standards Institute; 2009
    [Google Scholar]
  27. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 19842:2
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  29. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons Ltd.; 1994 pp. 265–309
    [Google Scholar]
  30. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5:109–118 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002730
Loading
/content/journal/ijsem/10.1099/ijsem.0.002730
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error