1887

Abstract

A novel marine sulfur-oxidizing bacterium, designated strain eps51, was isolated from a surface rock sample collected from the hydrothermal field of Suiyo Seamount on the Izu-Bonin Arc in the Western Pacific Ocean. This bacterium was Gram-staining-negative, non-motile and rod-shaped. Strain eps51 grew chemolithoautotrophically, by sulfur-oxidizing respiration with elemental sulfur and thiosulfate as electron donors and used only carbon dioxide as a carbon source. Oxygen and nitrate were used as its electron acceptors. The isolate grew optimally at 30 °C, at pH 7.0 and with 3 % NaCl. The predominant fatty acids were Cω7, Cω7 and C. The respiratory quinone was menaquinone-6 and the genomic DNA G+C content was 40.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that eps51 represented a member of the genus and the closest relative was (96.7 %). Based on its phylogenetic position along with its physiological and chemotaxonomic characteristics, the name sp. nov. is proposed, with the type strain eps51 (=NBRC 102602=DSM 19611).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002803
2018-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2183.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002803&mimeType=html&fmt=ahah

References

  1. Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 2006; 4:458–468 [View Article][PubMed]
    [Google Scholar]
  2. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T et al. Isolation and phylogenetic diversity of members of previously uncultivated ε-proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 2003; 218:167–174 [View Article][PubMed]
    [Google Scholar]
  3. Inagaki F, Takai K, Nealson KH, Horikoshi K. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa trough hydrothermal sediments. Int J Syst Evol Microbiol 2004; 54:1477–1482 [View Article][PubMed]
    [Google Scholar]
  4. Mino S, Kudo H, Arai T, Sawabe T, Takai K et al. Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus Sulfurovum. Int J Syst Evol Microbiol 2014; 64:3195–3201 [View Article][PubMed]
    [Google Scholar]
  5. Giovannelli D, Chung M, Staley J, Starovoytov V, Le Bris N et al. Sulfurovum riftiae sp. nov., a mesophilic, thiosulfate-oxidizing, nitrate-reducing chemolithoautotrophic epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete Riftia pachyptila. Int J Syst Evol Microbiol 2016; 66:2697–2701 [View Article][PubMed]
    [Google Scholar]
  6. Fujiyoshi S, Tateno H, Watsuji T, Yamaguchi H, Fukushima D et al. Effects of hemagglutination activity in the serum of a deep-sea vent endemic crab, Shinkaia crosnieri, on non-symbiotic and symbiotic bacteria. Microbes Environ 2015; 30:228–234 [View Article][PubMed]
    [Google Scholar]
  7. Suzuki Y, Sasaki T, Suzuki M, Nogi Y, Miwa T et al. Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl Environ Microbiol 2005; 71:5440–5450 [View Article][PubMed]
    [Google Scholar]
  8. Urakawa H, Dubilier N, Fujiwara Y, Cunningham DE, Kojima S et al. Hydrothermal vent gastropods from the same family (Provannidae) harbour ε- and γ-proteobacterial endosymbionts. Environ Microbiol 2005; 7:750–754 [View Article][PubMed]
    [Google Scholar]
  9. Glasby GP, Iizasa K, Yuasa M, Usui A. Submarine hydrothermal mineralization on the Izu–Bonin Arc, South of Japan: an overview. Mar Geores Geotechnol 2000; 18:141–176 [View Article]
    [Google Scholar]
  10. Mori K, Suzuki K, Urabe T, Sugihara M, Tanaka K et al. Thioprofundum hispidum sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing gammaproteobacterium isolated from the hydrothermal field on Suiyo Seamount, and proposal of Thioalkalispiraceae fam. nov. in the order Chromatiales. Int J Syst Evol Microbiol 2011; 61:2412–2418 [View Article][PubMed]
    [Google Scholar]
  11. Mori K, Suzuki K. Thiofaba tepidiphila gen. nov., sp. nov., a novel obligately chemolithoautotrophic, sulfur-oxidizing bacterium of the Gammaproteobacteria isolated from a hot spring. Int J Syst Evol Microbiol 2008; 58:1885–1891 [View Article][PubMed]
    [Google Scholar]
  12. Holding AJ, Collee JG. Routine biochemical tests. Methods Microbiol 1971; 6A:1–32
    [Google Scholar]
  13. Hewitt EJ, Nicholas DJD. Enzymes of inorganic nitrogen metabolism. In Linskens HF, Sanwal BD, Tracey MV. (editors) Modern Methods of Plant Analysis Gottingen, and Heidelberg: Springer; 1964 pp. 167–172
    [Google Scholar]
  14. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  15. Nakagawa Y, Yamasato K. Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 1993; 139:1155–1161 [View Article][PubMed]
    [Google Scholar]
  16. Hamada M, Iino T, Iwami T, Harayama S, Tamura T et al. Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., two new members of the family Dermatophilaceae, and reclassification of Dermatophilus chelonae (Masters et al. 1995) as Austwickia chelonae gen. nov., comb. nov. J Gen Appl Microbiol 2010; 56:427–436 [View Article][PubMed]
    [Google Scholar]
  17. Hattori S, Kamagata Y, Hanada S, Shoun H. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 2000; 50:1601–1609 [View Article][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K et al. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA 2007; 104:12146–12150 [View Article][PubMed]
    [Google Scholar]
  22. Yamamoto M, Nakagawa S, Shimamura S, Takai K, Horikoshi K. Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Environ Microbiol 2010; 12:1144–1153 [View Article][PubMed]
    [Google Scholar]
  23. Hamilton TL, Jones DS, Schaperdoth I, Macalady JL. Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem. Front Microbiol 2015; 5:756 [View Article][PubMed]
    [Google Scholar]
  24. Park SJ, Ghai R, Martín-Cuadrado AB, Rodríguez-Valera F, Jung MY et al. Draft genome sequence of the sulfur-oxidizing bacterium "Candidatus Sulfurovum sediminum" AR, which belongs to the Epsilonproteobacteria. J Bacteriol 2012; 194:4128–4129 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002803
Loading
/content/journal/ijsem/10.1099/ijsem.0.002803
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error