1887

Abstract

Cyanobacteria is an ancient phylum of oxygenic photosynthetic microorganisms found in almost all environments of Earth. In recent years, the taxonomic placement of some cyanobacterial strains, including those belonging to the genus Nostoc sensu lato, have been reevaluated by means of a polyphasic approach. Thus, 16S rRNA gene phylogeny and 16S–23S internal transcribed spacer (ITS) secondary structures coupled with morphological, ecological and physiological data are considered powerful tools for a better taxonomic and systematics resolution, leading to the description of novel genera and species. Additionally, underexplored and harsh environments, such as saline–alkaline lakes, have received special attention given they can be a source of novel cyanobacterial taxa. Here, a filamentous heterocytous strain, Nostocaceae CCM-UFV059, isolated from Laguna Amarga, Chile, was characterized applying the polyphasic approach; its fatty acid profile and physiological responses to salt (NaCl) were also determined. Morphologically, this strain was related to morphotypes of the Nostoc sensu lato group, being phylogenetically placed into the typical cluster of the genus Desmonostoc. CCM-UFV059 showed identity of the 16S rRNA gene as well as 16S–23S secondary structures that did not match those from known described species of the genus Desmonostoc, as well as distinct ecological and physiological traits. Taken together, these data allowed the description of the first strain of a member of the genus Desmonostoc from a saline–alkaline lake, named Desmonostoc salinum sp. nov., under the provisions of the International Code of Nomenclature for algae, fungi and plants. This finding extends the ecological coverage of the genus Desmonostoc, contributing to a better understanding of cyanobacterial diversity and systematics.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002878
2018-07-09
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2770.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002878&mimeType=html&fmt=ahah

References

  1. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 2005; 102:11131–11136 [View Article][PubMed]
    [Google Scholar]
  2. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T. The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 2006; 103:5442–5447 [View Article][PubMed]
    [Google Scholar]
  3. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18:791–809 [View Article][PubMed]
    [Google Scholar]
  4. Andreote AP, Vaz MG, Genuário DB, Barbiero L, Rezende-Filho AT et al. Nonheterocytous cyanobacteria from Brazilian saline–alkaline lakes. J Phycol 2014; 50:675–684 [View Article][PubMed]
    [Google Scholar]
  5. Vieira Vaz MG, Genuário DB, Andreote AP, Malone CF, Sant'anna CL et al. Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline–alkaline lakes. Int J Syst Evol Microbiol 2015; 65:298–308 [View Article][PubMed]
    [Google Scholar]
  6. Genuário DB, Andreote APD, Vaz M, Fiore MF. Heterocyte-forming cyanobacteria from Brazilian saline–alkaline lakes. Mol Phylogenet Evol 2017; 109:105–112 [View Article][PubMed]
    [Google Scholar]
  7. Saijo Y, Mitamura O, Tanaka M. A note on the chemical composition of lake water in the Laguna Amarga, a saline lake in Patagonia, Chile. Int J Salt Lake Research 1995; 4:165–167 [View Article]
    [Google Scholar]
  8. Zuñiga O, Wilson R, Amat F, Hontoria F. Distribution and characterization of Chilean populations of the brine shrimp Artemia (Crustacea, Branchiopoda, Anostraca). Int J Salt Lake Res 1999; 8:23–40 [View Article]
    [Google Scholar]
  9. Anagnostidis K, Komárek J. Modern approach to the classification system of cyanophytes. 1-Introduction. Arch Hydrobiol Suppl Algol Stud 1985; 38-39:291–302
    [Google Scholar]
  10. Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R et al. Polyphasic study of Antarctic cyanobacterial strains. J Phycol 2006; 42:1257–1270 [View Article]
    [Google Scholar]
  11. Turicchia S, Ventura S, Komárková J, Komárek J. Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera. Nova Hedwigia 2009; 89:165–200 [View Article]
    [Google Scholar]
  12. Genuário DB, Corrêa DM, Komárek J, Fiore MF. Characterization of freshwater benthic biofilm-forming Hydrocoryne (Cyanobacteria) isolates from Antarctica. J Phycol 2013; 49:1142–1153 [View Article][PubMed]
    [Google Scholar]
  13. Robertson BR, Tezuka N, Watanabe MM. Phylogenetic analyses of Synechococcus strains (Cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 2001; 51:861–871 [View Article][PubMed]
    [Google Scholar]
  14. Komarek J. Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 2006; 21:349–375 [View Article]
    [Google Scholar]
  15. Fiore MF, Sant’anna CL, Azevedo M, Komárek J, Kaštovský J et al. The cyanobacterial genus Brasilonema , gen. nov., a molecular and phenotypic evaluation. J Phycol 2007; 43:789–798 [View Article]
    [Google Scholar]
  16. Silva CS, Genuário DB, Vaz MG, Fiore MF. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 2014; 37:100–112 [View Article][PubMed]
    [Google Scholar]
  17. Bravakos P, Kotoulas G, Skaraki K, Pantazidou A, Economou-Amilli A. A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Mol Phylogenet Evol 2016; 98:147–160 [View Article][PubMed]
    [Google Scholar]
  18. Hoffmann L, Komárek J, Kaštovský J. System of cyanoprokaryotes (cyanobacteria) – state in 2004. Arch Hydrobiol Suppl Algol Stud 2005; 117:95–115 [View Article]
    [Google Scholar]
  19. Korelusová J, Kasˇtovský J, Komárek J. Heterogeneity of the cyanobacterial genus Synechocystis and description of a new genus, Geminocystis. J Phycol 2009; 45:928–937 [View Article][PubMed]
    [Google Scholar]
  20. Moreira D, Tavera R, Benzerara K, Skouri-Panet F, Couradeau E et al. Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov. Int J Syst Evol Microbiol 2017; 67:653–658 [View Article][PubMed]
    [Google Scholar]
  21. Nübel U, Garcia-Pichel F, Muyzer G. The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50:1265–1277 [View Article][PubMed]
    [Google Scholar]
  22. Choi DH, Noh JH, Lee CM, Rho S. Rubidibacter lacunae gen. nov., sp. nov., a unicellular, phycoerythrin-containing cyanobacterium isolated from seawater of Chuuk lagoon, Micronesia. Int J Syst Evol Microbiol 2008; 58:2807–2811 [View Article][PubMed]
    [Google Scholar]
  23. Genuário DB, Vaz MG, Hentschke GS, Sant'anna CL, Fiore MF. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 2015; 65:663–675 [View Article][PubMed]
    [Google Scholar]
  24. Genuário DB, Vaz M, Melo IS. Phylogenetic insights into the diversity of homocytous cyanobacteria from Amazonian rivers. Mol Phylogenet Evol 2017; 116:120–135 [View Article][PubMed]
    [Google Scholar]
  25. Rajaniemi P, Hrouzek P, Kastovská K, Willame R, Rantala A et al. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 2005; 55:11–26 [View Article][PubMed]
    [Google Scholar]
  26. Papaefthimiou D, Hrouzek P, Mugnai MA, Lukesova A, Turicchia S et al. Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. Int J Syst Evol Microbiol 2008; 58:553–564 [View Article][PubMed]
    [Google Scholar]
  27. Sciuto K, Moro I. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S-23S ITS region. Mol Phylogenet Evol 2016; 105:15–35 [View Article][PubMed]
    [Google Scholar]
  28. Bagchi SN, Dubey N, Singh P. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. Int J Syst Evol Microbiol 2017; 67:3329–3338 [View Article][PubMed]
    [Google Scholar]
  29. Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. Nov. Phycologia 2007; 46:481–502 [View Article]
    [Google Scholar]
  30. Hrouzek P, Lukesova A, Mares J, Ventura S. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea 2013; 13:201–213 [View Article]
    [Google Scholar]
  31. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979; 111:1–61 [View Article]
    [Google Scholar]
  32. Komárek J, Anagnostidis K. Modern approach to the classification system of Cyanophytes 4-Nostocales. Arch Hydrobiol Suppl Algol Stud 1989
    [Google Scholar]
  33. Komárek J. Cyanoprokaryota. In Budel B, Gartner G, Krientz L, Schagerl M. (editors) Part 3: Heterocytous Genera (Sußwasserflora von Mitteleuropa, vol. 19/3) Munich: Springer; 2013
    [Google Scholar]
  34. Rai S, Agrawal C, Shrivastava AK, Singh PK, Rai LC. Comparative proteomics unveils cross species variations in Anabaena under salt stress. J Proteomics 2014; 98:254–270 [View Article][PubMed]
    [Google Scholar]
  35. Neilan BA, Jacobs D, del Dot T, Blackall LL, Hawkins PR et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 1997; 47:693–697 [View Article][PubMed]
    [Google Scholar]
  36. Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 2003; 69:5157–5169 [View Article][PubMed]
    [Google Scholar]
  37. Lane D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics 1991 pp. 125–175
    [Google Scholar]
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  39. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9:772 [View Article][PubMed]
    [Google Scholar]
  40. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article][PubMed]
    [Google Scholar]
  41. Smith C, Heyne S, Richter AS, Will S, Backofen R. Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res 2010; 38:W373–W377 [View Article][PubMed]
    [Google Scholar]
  42. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 2012; 18:900–914 [View Article][PubMed]
    [Google Scholar]
  43. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005; 33:W686–W689 [View Article][PubMed]
    [Google Scholar]
  44. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
  45. Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J et al. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci USA 2004; 101:568–573 [View Article][PubMed]
    [Google Scholar]
  46. Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Laakso K et al. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evol Biol 2007; 7:183 [View Article][PubMed]
    [Google Scholar]
  47. Hoff-Risseti C, Dörr FA, Schaker PD, Pinto E, Werner VR et al. Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater. PLoS One 2013; 8:e74238 [View Article][PubMed]
    [Google Scholar]
  48. OECD OECD Guidelines for the Testing of Chemicals. Organization for Economic Co-operation and Development; 1994
  49. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM et al. Evidence for a core gut microbiota in the zebrafish. ISME J 2011; 5:1595–1608 [View Article][PubMed]
    [Google Scholar]
  50. Miscoe LH, Johansen JR, Vaccarino MA, Pietrasiak N, Sherwood AR. Novel cyanobacteria from caves on Kauai, Hawaii. Gebr Bibliotheca Phycologica 2016; 120:75–152
    [Google Scholar]
  51. Sahu A, Pancha I, Jain D, Paliwal C, Ghosh T et al. Fatty acids as biomarkers of microalgae. Phytochemistry 2013; 89:53–58 [View Article][PubMed]
    [Google Scholar]
  52. Temina M, Rezankova H, Rezanka T, Dembitsky VM. Diversity of the fatty acids of the Nostoc species and their statistical analysis. Microbiol Res 2007; 162:308–321 [View Article][PubMed]
    [Google Scholar]
  53. Dadheech PK, Glöckner G, Casper P, Kotut K, Mazzoni CJ et al. Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake. FEMS Microbiol Ecol 2013; 85:389–401 [View Article][PubMed]
    [Google Scholar]
  54. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  55. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998; 19:554–568 [View Article][PubMed]
    [Google Scholar]
  56. Flechtner VR, Boyer SL, Johansen JR, Denoble ML. Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwigia 2002; 74:1–24 [View Article]
    [Google Scholar]
  57. Berrendero E, Perona E, Mateo P. Phenotypic variability and phylogenetic relationships of the genera Tolypothrix and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 2011; 61:3039–3051 [View Article][PubMed]
    [Google Scholar]
  58. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M. Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 2000; 146:1275–1286 [View Article][PubMed]
    [Google Scholar]
  59. Svenning MM, Eriksson T, Rasmussen U. Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arch Microbiol 2005; 183:19–26 [View Article][PubMed]
    [Google Scholar]
  60. Chatchawan T, Komárek J, Strunecký O, Šmarda J, Peerapornpisal Y. Oxynema , a new genus separated from the genus Phormidium (Cyanophyta). Cryptogamie, Algologie 2012; 33:41–59 [View Article]
    [Google Scholar]
  61. Thajuddin N, Subramanian G. Survey of cyanobacterial flora of the southern east coast of India. Botanica Marina 1992; 35:305–314 [View Article]
    [Google Scholar]
  62. Apte SK, Thomas J. Possible amelioration of coastal soil salinity using halotolerant nitrogen-fixing cyanobacteria. Plant Soil 1997; 189:205–211 [View Article]
    [Google Scholar]
  63. Moisander PH, McClinton E, Paerl HW. Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 2002; 43:432–442 [View Article][PubMed]
    [Google Scholar]
  64. Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 2002; 28:56–63 [View Article][PubMed]
    [Google Scholar]
  65. Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M. Acaryochloris marina gen. et sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing chl d as a major pigment1. J Phycol 2003; 39:1247–1253 [View Article]
    [Google Scholar]
  66. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W et al. International code of nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Vegetabile 2012; 154:208
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002878
Loading
/content/journal/ijsem/10.1099/ijsem.0.002878
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error