1887

Abstract

A novel Gram-stain-positive, aerobic actinomycete, designated strain SMC 195, was isolated from soil collected from a mangrove forest in Thailand. The strain produced extensively branched substrate and aerial mycelia. The substrate mycelium was fragmented into rod-shaped elements, and spore chains consisting of smooth and rod-shaped spores were formed on the aerial mycelium. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that SMC 195 represented a member of the genus Pseudonocardia , and the most closely phylogenetically related species were Pseudonocardia yuanmonensis JCM 18055 (99.2 % 16S rRNA gene sequence similarity), Pseudonocardia halophobica NRRL B-16514 (98.9 %) and Pseudonocardia kujensis NRRL B-24890 (98.7 %). However, the DNA–DNA relatedness values between SMC 195and the closest phylogenetically related species were significantly below 70 %. The G+C content of the genomic DNA was 74±0.8 mol%. The cell wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars consisted of arabinose, galactose, glucose, rhamnose and ribose. The menaquinone was MK-8(H4) only. The major cellular fatty acid was the branched fatty acid iso-C16 : 0 (33.6 %). The polar lipids detected were phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxyphosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and unidentified glycolipids. On the basis of the results from phenotypic, chemotaxonomic and genotypic studies, it is concluded that SMC 195 represents a novel species of the genus Pseudonocardia , for which the name Pseudonocardia mangrovi sp. nov. is proposed. The type strain is SMC 195 (=TBRC 7778=NBRC 113150).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002927
2018-07-24
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2949.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002927&mimeType=html&fmt=ahah

References

  1. Henssen A. Beiträge zur morphologie und systematik der thermophilen actinomyceten. Archiv für Mikrobiologie 1957; 26:373–414 [View Article]
    [Google Scholar]
  2. Huang Y, Goodfellow M. Genus I, Pseudonocardia. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergey’s Manual of Systematic Bacteriology vol. 5 The Actinobacteria New York: Springer; 2012 pp. 1305–1323
    [Google Scholar]
  3. Park SW, Park ST, Lee JE, Kim YM. Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 2008; 58:2475–2478 [View Article][PubMed]
    [Google Scholar]
  4. Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2011; 61:1259–1264 [View Article][PubMed]
    [Google Scholar]
  5. Qin S, Su YY, Zhang YQ, Wang HB, Jiang CL et al. Pseudonocardia ailaonensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 2008; 58:2086–2089 [View Article][PubMed]
    [Google Scholar]
  6. Sahin N, Veyisoglu A, Tatar D, Spröer C, Cetin D et al. Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1703–1711 [View Article][PubMed]
    [Google Scholar]
  7. Gu Q, Luo H, Zheng W, Liu Z, Huang Y. Pseudonocardia oroxyli sp. nov., a novel actinomycete isolated from surface-sterilized Oroxylum indicum root. Int J Syst Evol Microbiol 2006; 56:2193–2197 [View Article][PubMed]
    [Google Scholar]
  8. Chen HH, Qin S, Li J, Zhang YQ, Xu LH et al. Pseudonocardia endophytica sp. nov., isolated from the pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 2009; 59:559–563 [View Article][PubMed]
    [Google Scholar]
  9. Qin S, Zhu WY, Jiang JH, Klenk HP, Li J et al. Pseudonocardia tropica sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2010; 60:2524–2528 [View Article][PubMed]
    [Google Scholar]
  10. Kaewkla O, Franco CM. Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of a grey box tree (Eucalyptus microcarpa). Int J Syst Evol Microbiol 2010; 60:2818–2822 [View Article][PubMed]
    [Google Scholar]
  11. Kaewkla O, Franco CM. Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree. Int J Syst Evol Microbiol 2011; 61:742–746 [View Article][PubMed]
    [Google Scholar]
  12. Zhao GZ, Li J, Huang HY, Zhu WY, Park DJ et al. Pseudonocardia kunmingensis sp. nov., an actinobacterium isolated from surface-sterilized roots of Artemisia annua L. Int J Syst Evol Microbiol 2011; 61:2292–2297 [View Article][PubMed]
    [Google Scholar]
  13. Zhao GZ, Li J, Zhu WY, Wei DQ, Zhang JL et al. Pseudonocardia xishanensis sp. nov., an endophytic actinomycete isolated from the roots of Artemisia annua L. Int J Syst Evol Microbiol 2012; 62:2395–2399 [View Article][PubMed]
    [Google Scholar]
  14. Liu ZP, Wu JF, Liu ZH, Liu SJ. Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2006; 56:555–558 [View Article][PubMed]
    [Google Scholar]
  15. Zhang DF, Jiang Z, Li L, Liu BB, Zhang XM et al. Pseudonocardia sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2014; 64:745–750 [View Article][PubMed]
    [Google Scholar]
  16. Kämpfer P, Kohlweyer U, Thiemer B, Andreesen JR. Pseudonocardia tetrahydrofuranoxydans sp. nov. Int J Syst Evol Microbiol 2006; 56:1535–1538 [View Article][PubMed]
    [Google Scholar]
  17. Sujarit K, Sujada N, Kudo T, Ohkuma M, Pathom-Aree W et al. Pseudonocardia thailandensis sp. nov., an actinomycete isolated from a subterranean termite nest. Int J Syst Evol Microbiol 2017; 67:2773–2778 [View Article][PubMed]
    [Google Scholar]
  18. Suzuki S, Okuda T, Komatsubara S. Selective isolation and study on the global distribution of the genus Planobispora in soils. Can J Microbiol 2001; 47:979–986 [View Article][PubMed]
    [Google Scholar]
  19. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  20. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [View Article][PubMed]
    [Google Scholar]
  21. Monciardini P, Sosio M, Cavaletti L, Chiocchini C, Donadio S. New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. FEMS Microbiol Ecol 2002; 42:419–429 [View Article][PubMed]
    [Google Scholar]
  22. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  23. Hall TA. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Felsenstein J. Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 1983; 14:313–333 [View Article]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  30. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  31. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  32. Verlander CP. Detection of horseradish peroxidase by colorimetry. In Kricka LJ. (editor) Nonisotopic DNA Probe Technique New York: Academic Press; 1992 pp. 185–201
    [Google Scholar]
  33. Itoh T, Kudo T, Parenti F, Seino A. Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int J Syst Bacteriol 1989; 39:168–173 [View Article]
    [Google Scholar]
  34. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  35. Kelly KL. Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  36. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  37. Arai T. Culture Media for Actinomycetes Tokyo: Japanese Society for Actinomycetes; 1975
    [Google Scholar]
  38. Wlliams ST, Cross T. Actinomycetes. Methods Microbiol 1971; 4:295–334
    [Google Scholar]
  39. Tamura T, Nakagaito Y, Nishii T, Hasegawa T, Stackebrandt E et al. A new genus of the order Actinomycetales, Couchioplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchioplanes caeruleus subsp. azureus subsp. nov. Int J Syst Bacteriol 1994; 44:193–203 [View Article][PubMed]
    [Google Scholar]
  40. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  41. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  42. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  43. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  44. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  45. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  46. Nie GX, Ming H, Wei DQ, Zhou EM, Tang X et al. Pseudonocardia yuanmoensis sp. nov., a novel actinobacterium isolated from soil in Yunnan, south-west China. Antonie van Leeuwenhoek 2012; 101:753–760 [View Article][PubMed]
    [Google Scholar]
  47. Akimov VN, Evtushenko LI, Dobritsa SV. Pseudoamycolata halophobica gen. nov., sp. nov. Int J Syst Bacteriol 1989; 39:457–461 [View Article]
    [Google Scholar]
  48. McVeigh HP, Munro J, Embley TM. The phylogenetic position of Pseudoamycolata halophobica (Akimov et al. 1989) and a proposal to reclassify it as Pseudonocardia halophobica. Int J Syst Bacteriol 1994; 44:300–302 [View Article][PubMed]
    [Google Scholar]
  49. Sahin N, Veyisoglu A, Tatar D, Spröer C, Cetin D et al. Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1703–1711 [View Article][PubMed]
    [Google Scholar]
  50. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  51. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002927
Loading
/content/journal/ijsem/10.1099/ijsem.0.002927
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error