1887

Abstract

Two strains of Gram-stain-positive, endospore-forming, motile by means of peritrichous flagella, aerobic or facultative anaerobic, and rod-shaped bacteria that were designated ON8 and ON6 were isolated from soil collected from a mountain wetland in Gwang-ju, Republic of Korea. The isolates were catalase-positive and oxidase-negative. Cells of ON8 and ON6 grew at 15–35 °C (optimal 30 °C) and 15–40 °C (optimal 30 °C), respectively. The major menaquinone was MK-7 and the major cellular fatty acids (>10 % of the total) were anteiso-C15 : 0, iso-C15 : 0, C14 : 0 and C16 : 0. The predominant polar lipids were diphosphatidylglycerol, aminophospholipid and phospholipid. Meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The DNA G+C contents of strains ON8 and ON6 were 50.6 and 53.5 mol%, respectively, and the 16S rRNA gene sequence analysis showed that the nearest phylogenetic neighbour of both strains was Gorillibacterium massiliense G5 (93.9 %), followed by the members of the genus Paenibacillus in the family Paenibacillaceae . The DNA–DNA hybridization relatedness value between ON8 and ON6 was 44.1 %, which indicated that they represented distinct species. Based on polyphasic characteristics, a novel genus is proposed with the name Paludirhabdus gen. nov., which consists of two species, Paludirhabdus telluriireducens sp. nov. (the type species; type strain ON8=KACC 19267=JCM 31958) and Paludirhabdus pumila sp. nov. (type strain ON6=KACC 19266=JCM 31957).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002946
2018-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/3040.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002946&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260[PubMed]
    [Google Scholar]
  2. Cao WR, Guo LY, Du ZJ, Das A, Saren G et al. Chengkuizengella sediminis gen. nov. sp. nov., isolated from sediment. Int J Syst Evol Microbiol 2017; 67:2672–2678 [View Article][PubMed]
    [Google Scholar]
  3. Guo LY, Xia J, Ling SK, Chen GJ, Du ZJ. Marinicrinis sediminis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016; 66:3725–3730 [View Article][PubMed]
    [Google Scholar]
  4. Kukolya J, Bata-Vidács I, Luzics S, Tóth E, Kéki Z et al. Xylanibacillus composti gen. nov., sp. nov., isolated from compost. Int J Syst Evol Microbiol 2018; 68:698–702 [View Article][PubMed]
    [Google Scholar]
  5. Keita MB, Padhmanabhan R, Caputo A, Robert C, Delaporte E et al. Non-contiguous finished genome sequence and description of Gorillibacterium massiliense gen. nov, sp. nov., a new member of the family Paenibacillaceae. Stand Genomic Sci 2014; 9:807–820 [View Article][PubMed]
    [Google Scholar]
  6. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67:529–531 [View Article][PubMed]
    [Google Scholar]
  7. De Vos P, Ludwig W, Schleifer KH, Whitman WB. Paenibacillaceae fam. nov. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey's Manual of Systematic Bacteriology: The Firmicutes, 2nd ed. vol. 3 New York: Springer-Verlag; 2009 p. 309
    [Google Scholar]
  8. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  9. Barrow GI, Cowan FRK. Steel's Manual for the Identification of Medical Bacteria, 3rd ed. London: Cambridge University Press; 1993
    [Google Scholar]
  10. Reichenbach H. Order I. Cytophagales Leadbetter 1974. In Staley JT, Bryant MP, Pfennig N, Holt JG. (editors) Bergey's Manual of Systematic Bacteriology vol. 3 Baltimore: Williams & Wilkins; 1989 pp. 2011–2013
    [Google Scholar]
  11. Conn H, Bartholomew J, Jennison M. Staining methods. In Society of American Bacteriologists (editor) Manual of Microbiological Methods New York: McGraw-Hill; 1957 pp. 10–36
    [Google Scholar]
  12. Babady N, Wengenack N. Clinical laboratory diagnostics for Mycobacterium tuberculosis. In Cardona P-J. (editor) Understanding Tuberculosis—Global Experiences and Innovative Approaches to the Diagnosis Rijeka: Tech Press; 2012 doi:10.5772/30972
    [Google Scholar]
  13. Klonowska A, Heulin T, Vermeglio A. Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol 2005; 71:5607–5609 [View Article][PubMed]
    [Google Scholar]
  14. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics John Wiley & Sons: New York; 1991 pp. 115–175
    [Google Scholar]
  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article]
    [Google Scholar]
  16. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  17. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  23. McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ et al. Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 1998; 48:1405–1412 [View Article][PubMed]
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  25. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  27. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  28. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  29. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
  30. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  31. Yoon JH, Oh HM, Yoon BD, Kang KH, Park YH. Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 2003; 53:295–301 [View Article][PubMed]
    [Google Scholar]
  32. Xie CH, Yokota A. Paenibacillus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007; 57:70–72 [View Article][PubMed]
    [Google Scholar]
  33. Zhang J, Wang ZT, Yu HM, Ma Y. Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 2013; 63:1776–1781 [View Article][PubMed]
    [Google Scholar]
  34. Kim JH, Kang H, Kim W. Paenibacillus doosanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1271–1277 [View Article][PubMed]
    [Google Scholar]
  35. Saha P, Krishnamurthi S, Bhattacharya A, Sharma R, Chakrabarti T. Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2010; 60:422–428 [View Article]
    [Google Scholar]
  36. Lee KC, Kim KK, Eom MK, Kim MJ, Lee JS. Fontibacillus panacisegetis sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011; 61:369–374 [View Article][PubMed]
    [Google Scholar]
  37. Kim SJ, Weon HY, Kim YS, Anandham R, Jeon YA et al. Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 2010; 60:526–530 [View Article][PubMed]
    [Google Scholar]
  38. Lee KC, Kim KK, Kim JS, Kim DS, Ko SH et al. Cohnella collisoli sp. nov., isolated from lava forest soil. Int J Syst Evol Microbiol 2015; 65:3125–3130 [View Article][PubMed]
    [Google Scholar]
  39. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010; 60:2284–2287 [View Article]
    [Google Scholar]
  40. Rivas R, García-Fraile P, Zurdo-Piñeiro JL, Mateos PF, Martínez-Molina E et al. Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. Int J Syst Evol Microbiol 2008; 58:1850–1854 [View Article][PubMed]
    [Google Scholar]
  41. Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J et al. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity–description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol 2010; 33:328–336 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002946
Loading
/content/journal/ijsem/10.1099/ijsem.0.002946
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error