1887

Abstract

A halophilic archaeon, strain MBLA0036, was isolated from Sorae solar saltern near Incheon, Republic of Korea. Strain MBLA0036 had three 16S rRNA genes: rrnA, rrnB and rrnC. The 16S rRNA gene sequence similarities between strain MBLA0036 (based on the rrnA gene) and Haloplanus ruber R35 and Haloplanus litoreus GX21 were 98.0 and 97.3 %, respectively. The similarities of the RNA polymerase subunit B′ gene between strain MBLA0036 and H. ruber R35 and H. litoreus GX21 were 94.0 and 92.1 %, respectively. Cells of strain MBLA0036 were Gram-stain-negative, motile, red-pigmented, pleomorphic, flat and contained gas vesicles. Strain MBLA0036 grew at 15‒55 °C (optimum, 37 °C), in 10‒30 % (w/v) NaCl (15 %, w/v) with 0‒0.5 M MgSO4.7H2O (0.2 M) and at pH 6.0–9.0 (pH 7.0). The cells lysed in distilled water and the minimum NaCl concentration that prevented cell lysis was 5 % (w/v). Major polar lipids of strain MBLA0036 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a glycolipid that was chromatographically identical to sulfated mannosyl glucosyl diether. The major isoprenoid quinone was menaquinone-8. The genomic DNA G+C content was 65.5 mol%. DNA–DNA hybridization values between strain MBLA0036 and H. ruber JCM 17271 and H. litoreus JCM 17092 were 35±3 and 18±1 %, respectively. Therefore, strain MBLA0036 is described a novel species of the Haloplanus , for which we propose the name Haloplanus rallus sp. nov. The type strain is MBLA0036 (=KCTC 4239=JCM 31425).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002970
2018-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3226.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002970&mimeType=html&fmt=ahah

References

  1. Oren A. Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 2012; 62:263–271 [View Article][PubMed]
    [Google Scholar]
  2. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016; 109:565–587 [View Article][PubMed]
    [Google Scholar]
  3. Bardavid RE, Mana L, Oren A. Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea-Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 2007; 57:780–783 [View Article][PubMed]
    [Google Scholar]
  4. Cui HL, Gao X, Li XY, Xu XW, Zhou YG et al. Haloplanus vescus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haloplanus. Int J Syst Evol Microbiol 2010; 60:1824–1827 [View Article][PubMed]
    [Google Scholar]
  5. Cui HL, Gao X, Yang X, Xu XW. Haloplanus aerogenes sp. nov., an extremely halophilic archaeon from a marine solar saltern. Int J Syst Evol Microbiol 2011; 61:965–968 [View Article][PubMed]
    [Google Scholar]
  6. Qiu XX, Zhao ML, Han D, Zhang WJ, Cui HL. Haloplanus salinus sp. nov., an extremely halophilic archaeon from a Chinese marine solar saltern. Arch Microbiol 2013; 195:799–803 [View Article][PubMed]
    [Google Scholar]
  7. Han D, Cui HL. Haloplanus litoreus sp. nov. and Haloplanus ruber sp. nov., from a marine solar saltern and an aquaculture farm, respectively. Antonie van Leeuwenhoek 2014; 105:679–685 [View Article][PubMed]
    [Google Scholar]
  8. Burns DG, Janssen PH, Itoh T, Minegishi H, Usami R et al. Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas. Int J Syst Evol Microbiol 2010; 60:1173–1176 [View Article][PubMed]
    [Google Scholar]
  9. Cui HL, Zhou PJ, Oren A, Liu SJ. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 2009; 13:31–37 [View Article][PubMed]
    [Google Scholar]
  10. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article][PubMed]
    [Google Scholar]
  11. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  13. Kimura M. The Neutral Theory of Molecular Evolution Cambrige: Cambrige University Press; 1983
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [View Article]
    [Google Scholar]
  18. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  19. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485[PubMed]
    [Google Scholar]
  20. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580[PubMed]
    [Google Scholar]
  21. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  22. Benson HJ. Microbiological Applications: Laboratory Manual in General Microbiology, 8th ed. McGraw-Hill, NY: McGraw-Hill; 2002
    [Google Scholar]
  23. Yim KJ, Cha IT, Lee HW, Song HS, Kim KN et al. Halorubrum halophilum sp. nov., an extremely halophilic archaeon isolated from a salt-fermented seafood. Antonie van Leeuwenhoek 2014; 105:603–612 [View Article][PubMed]
    [Google Scholar]
  24. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  25. Holding A, Collee J. Chapter I Routine biochemical tests. Methods Microbiol 1971; 6:1–32
    [Google Scholar]
  26. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F et al. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 2005; 55:500–505 [View Article][PubMed]
    [Google Scholar]
  27. Gutiérrez MC, Castillo AM, Kamekura M, Ventosa A. Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 2008; 58:2880–2884 [View Article][PubMed]
    [Google Scholar]
  28. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  29. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  31. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. RepoRt of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  32. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  35. Cui HL, Gao X, Yang X, Xu XW. Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 2010; 14:493–499 [View Article][PubMed]
    [Google Scholar]
  36. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  37. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002970
Loading
/content/journal/ijsem/10.1099/ijsem.0.002970
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error