1887

Abstract

A Gram-negative bacterium, strain HA7, was isolated from the microhabitat of common hazel (Corylus avellana L.) pollen. HA7 was found to be an aerobic, rod-shaped, catalase-positive, oxidase-negative bacterium with an optimum growth temperature of 25 °C and pH of 7. The nearly complete 16S rRNA gene sequence of HA7 strain showed the closest similarities to Spirosoma linguale DSM 74 (97.4 %) and Spirosoma fluviale DSM 29961 (97.43 %). The major fatty acids (>5 %) were C16 : 1ω5c, summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0 and iso-C17 : 0 3-OH. The major polar lipids were an unidentified aminophospholipid and phosphatidylethanolamine. The major respiratory quinone detected was menaquinone MK-7 (95 %). The draft genome sequence included 8 794 837 bases, which contained 3665 predicted coding sequences and had a G+C content of 47.9 mol%. The genome-based comparison between HA7 and S. linguale DSM 74 and S. fluviale DSM 29961 with pairwise average nucleotide identity indicated a clear distinction, between 76.2–76.3 %. Moreover, the digital DNA–DNA relatedness of HA7 to these strains was 26.5 and 25.1 %. Based on the differential genotypic, phenotypic and chemotaxonomic properties to closely related type strains, strain HA7 ought to be assigned with the status of a new species, for which the name Spirosoma pollinicola sp. nov. is proposed. The type strain is HA7 (DSM 105799=LMG 30282).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002973
2018-08-22
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3248.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002973&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien, Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe; 1894; 1235–238
  2. Skerman VBD, Sneath PHA, McGowan V. Approved Lists of Bacterial Names. Int J Syst Evol Microbiol 1980; 30:225–420 [View Article]
    [Google Scholar]
  3. Finster KW, Herbert RA, Lomstein BA. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2009; 59:839–844 [View Article][PubMed]
    [Google Scholar]
  4. Ahn JH, Weon HY, Kim SJ, Hong SB, Seok SJ et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2014; 64:3230–3234 [View Article][PubMed]
    [Google Scholar]
  5. Leadbetter ER. Order II Cytophageles Nomen novum. In Buchanan RE, Gibbons NE. (editors) Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins Co; 1974 p. 99
    [Google Scholar]
  6. Krieg NR. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012; 62:1–4
    [Google Scholar]
  7. Stanier RY. Studies on the Cytophagas. J Bacteriol 1940; 40:619–635[PubMed]
    [Google Scholar]
  8. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2018; 68:2130–2133 [View Article]
    [Google Scholar]
  9. Manirajan BA, Maisinger C, Ratering S, Rusch V, Schwiertz A et al. Diversity, specificity, co-occurrence and hub taxa of the bacterial-fungal pollen microbiome. FEMS Microbiol Ecol 2018; 94:1–10 [View Article][PubMed]
    [Google Scholar]
  10. Ambika Manirajan B, Ratering S, Rusch V, Schwiertz A, Geissler-Plaum R et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ Microbiol 2016; 18:5161–5174 [View Article][PubMed]
    [Google Scholar]
  11. Hatayama K, Kuno T. Spirosoma fluviale sp. nov., isolated from river water. Int J Syst Evol Microbiol 2015; 65:3447–3450 [View Article][PubMed]
    [Google Scholar]
  12. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [View Article]
    [Google Scholar]
  13. Suarez C, Ratering S, Schäfer J, Schnell S. Ancylobacter pratisalsi sp. nov. with plant growth promotion abilities from the rhizosphere of Plantago winteri Wirtg. Int J Syst Evol Microbiol 2017; 67:4500–4506 [View Article][PubMed]
    [Google Scholar]
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  16. Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 2012; 78:717–725 [View Article][PubMed]
    [Google Scholar]
  17. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  18. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  19. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  20. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  21. Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T et al. GenDB–an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 2003; 31:2187–2195 [View Article][PubMed]
    [Google Scholar]
  22. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  23. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  24. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  25. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  26. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  27. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  28. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Marzluf GA, Reddy CA, Beveridge TJ, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007 pp. 330–393
    [Google Scholar]
  29. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  32. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article][PubMed]
    [Google Scholar]
  33. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  34. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009; 10:154 [View Article][PubMed]
    [Google Scholar]
  35. Martínez-García PM, López-Solanilla E, Ramos C, Rodríguez-Palenzuela P. Prediction of bacterial associations with plants using a supervised machine-learning approach. Environ Microbiol 2016; 18:4847–4861 [View Article][PubMed]
    [Google Scholar]
  36. Lail K, Sikorski J, Saunders E, Lapidus A, Glavina del Rio T et al. Complete genome sequence of Spirosoma linguale type strain (1T). Stand Genomic Sci 2010; 2:176–184 [View Article][PubMed]
    [Google Scholar]
  37. Lee JJ, Srinivasan S, Lim S, Joe M, Im S et al. Spirosoma radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Curr Microbiol 2014; 69:286–291 [View Article][PubMed]
    [Google Scholar]
  38. Weilan L, Lee JJ, Lee SY, Park S, Ten LN et al. Spirosoma humi sp. nov., isolated from soil in South Korea. Curr Microbiol 2018; 75:328–335 [View Article][PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  40. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  41. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002973
Loading
/content/journal/ijsem/10.1099/ijsem.0.002973
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error