1887

Abstract

Strain DXL2, a Gram-stain-negative, rod-shaped, endospore-forming, motile, aerobic bacterium, was isolated from selenium mineral soil. DXL2 had the highest 16S rRNA gene sequence similarities with those of Paenibacillus ginsengarvi Gsoil 139 (96.8 %), Paenibacillus hemerocallicola DLE-12 (95.5 %) and Paenibacillus hodogayensis SG (95.4 %). The genome size of DXL2 was 7.24 Mb, containing 6243 predicted protein-coding genes, with a DNA G+C content of 60.2 mol%. DXL2 contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The major cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C15 : 0. The major quinone was menaquinone 7. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, an unidentified aminolipid, phosphatidylmethylethanolamine, an unidentified glycolipid and an unidentified phospholipid. Compared with the other strains, DXL2 had a specific phospholipid and a specific aminolipid, it hydrolyzed Tween 40 and could not assimilate potassium gluconate. On the basis of the phenotypic, chemotaxonomic and phylogenetic results, strain DXL2 represents a novel species within the genus Paenibacillus , for which the name Paenibacillus flagellatus sp. nov. is proposed. The type strain is DXL2 (=KCTC 33976=CCTCC AB 2018054).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003125
2018-11-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/183.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003125&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260[PubMed]
    [Google Scholar]
  2. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 1991; 13:202–206 [View Article]
    [Google Scholar]
  3. Daane LL, Harjono I, Barns SM, Launen LA, Palleron NJ et al. PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 2002; 52:131–139 [View Article][PubMed]
    [Google Scholar]
  4. Lim JM, Jeon CO, Lee JC, Xu LH, Jiang CL et al. Paenibacillus gansuensis sp. nov., isolated from desert soil of Gansu Province in China. Int J Syst Evol Microbiol 2006; 56:2131–2134 [View Article][PubMed]
    [Google Scholar]
  5. Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 3 New York: Springer; 2009 pp. 269
    [Google Scholar]
  6. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  7. Yoon MH, Ten LN, Im WT. Paenibacillus ginsengarvi sp. nov., isolated from soil from ginseng cultivation. Int J Syst Evol Microbiol 2007; 57:1810–1814 [View Article][PubMed]
    [Google Scholar]
  8. Kim TS, Han JH, Joung Y, Kim SB. Paenibacillus oenotherae sp. nov. and Paenibacillus hemerocallicola sp. nov., isolated from the roots of herbaceous plants. Int J Syst Evol Microbiol 2015; 65:2717–2725 [View Article][PubMed]
    [Google Scholar]
  9. Takeda M, Suzuki I, Koizumi J. Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int J Syst Evol Microbiol 2005; 55:737–741 [View Article][PubMed]
    [Google Scholar]
  10. Cao Y, Chen F, Li Y, Wei S, Wang G. Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 2015; 65:165–170 [View Article][PubMed]
    [Google Scholar]
  11. Xiang W, Wang G, Wang Y, Yao R, Zhang F et al. Paenibacillus selenii sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol 2014; 64:2662–2667 [View Article][PubMed]
    [Google Scholar]
  12. Yang D, Cha S, Choi J, Seo T. Paenibacillus mobilis sp. nov., a Gram-stain-negative bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:1140–1145 [View Article][PubMed]
    [Google Scholar]
  13. Li P, Lin W, Liu X, Li S, Luo L et al. Paenibacillus aceti sp. nov., isolated from the traditional solid-state acetic acid fermentation culture of Chinese cereal vinegar. Int J Syst Evol Microbiol 2016; 66:3426–3431 [View Article][PubMed]
    [Google Scholar]
  14. Tohno M, Sakamoto M, Ohkuma M, Tajima K. Paenibacillus silagei sp. nov. isolated from corn silage. Int J Syst Evol Microbiol 2016; 66:3873–3877 [View Article][PubMed]
    [Google Scholar]
  15. Fan H, Su C, Wang Y, Yao J, Zhao K et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 2008; 105:529–539 [View Article][PubMed]
    [Google Scholar]
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  21. Nei M, Kumar S. Molecular evolution and phylogenetics. Heredity 2013; 86:385
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  23. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485[PubMed]
    [Google Scholar]
  24. Ryu E. On the Gram-differentiation of bacteria by the simplest method. Journal of The Japanese Society of Veterinary Science 1938; 17:205–207 [View Article]
    [Google Scholar]
  25. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774[PubMed]
    [Google Scholar]
  26. Vila J, Gené A, García C, Vidal C, Barranco M et al. [Rapid method for identifying Escherichia coli and species of the Proteeae tribe in urine]. Med Clin 1992; 99:601–604
    [Google Scholar]
  27. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  28. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  29. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184[PubMed]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note. vol. 101 Newark: MIDI Inc; 1990
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  33. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  34. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  35. Nguyen NL, Kim YJ, Hoang VA, Kang JP, Singh P et al. Paenibacillus panaciterrae sp. nov., isolated from ginseng-cultivated soil. Int J Syst Bacteriol 2015; 65:4080–4086 [View Article][PubMed]
    [Google Scholar]
  36. Vaz-Moreira I, Faria C, Nobre MF, Schumann P, Nunes OC et al. Paenibacillus humicus sp. nov., isolated from poultry litter compost. Int J Syst Evol Microbiol 2007; 57:2267–2271 [View Article][PubMed]
    [Google Scholar]
  37. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  38. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003125
Loading
/content/journal/ijsem/10.1099/ijsem.0.003125
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error