1887

Abstract

A Gram-stain-negative, rod-shaped, non-motile, strictly aerobic strain, designated as MTEO17, was isolated from a 1000 m deep seawater sample of the Mariana Trench. Growth was observed at 10–45 °C (optimum, 37 °C), in the presence of 0.0–12.0 % NaCl (w/v; optimum, 3.0 %) and at pH 6.0–10.0 (optimum, pH 7.0–8.0). Phylogenetic analysis, based on the 16S rRNA gene sequence, revealed that strain MTEO17 belonged to the genus Alcanivorax and showed the highest sequence similarity of 97.9 % to Alcanivorax nanhaiticus MCCC 1A05629. The estimated average nucleotide identity and DNA–DNA hybridization values between strain MTEO17 and A. nanhaiticus MCCC 1A05629 were 78.98 and 23.80 %, respectively. The significant dominant fatty acids were C16 : 0, summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c). The polar lipids comprised two phosphatidylethanolamines, one phosphatidylglycerol, one unidentified phospholipid and four unidentified polar lipids. The DNA G+C content of strain MTEO17 was 57.5 %. On the basis of the polyphasic evidence, strain MTEO17 is proposed to represent a novel species of the genus Alcanivorax , for which the name Alcanivorax profundi sp. nov. is proposed. The type strain is MTEO17 (=KCTC 52694=MCCC 1K03252).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003145
2018-12-13
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/371.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003145&mimeType=html&fmt=ahah

References

  1. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 1998; 48:339–348 [View Article][PubMed]
    [Google Scholar]
  2. Bruns A, Berthe-Corti L. Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 1999; 49:441–448 [View Article][PubMed]
    [Google Scholar]
  3. Fernández-Martínez J, Pujalte MJ, García-Martínez J, Mata M, Garay E et al. Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 2003; 53:331–338 [View Article][PubMed]
    [Google Scholar]
  4. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005; 55:1181–1186 [View Article][PubMed]
    [Google Scholar]
  5. Rivas R, García-Fraile P, Peix A, Mateos PF, Martínez-Molina E et al. Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 2007; 57:1331–1335 [View Article][PubMed]
    [Google Scholar]
  6. Wu Y, Lai Q, Zhou Z, Qiao N, Liu C et al. Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Int J Syst Evol Microbiol 2009; 59:1474–1479 [View Article][PubMed]
    [Google Scholar]
  7. Lai Q, Wang L, Liu Y, Fu Y, Zhong H et al. Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 2011; 61:1370–1374 [View Article][PubMed]
    [Google Scholar]
  8. Lai Q, Wang J, Gu L, Zheng T, Shao Z. Alcanivorax marinus sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2013; 63:4428–4432 [View Article][PubMed]
    [Google Scholar]
  9. Rahul K, Sasikala C, Tushar L, Debadrita R, Ramana C. Alcanivorax xenomutans sp. nov., a hydrocarbonoclastic bacterium isolated from a shrimp cultivation pond. Int J Syst Evol Microbiol 2014; 64:3553–3558 [View Article][PubMed]
    [Google Scholar]
  10. Kyoung Kwon K, Hye Oh J, Yang SH, Seo HS, Lee JH. Alcanivorax gelatiniphagus sp. nov., a marine bacterium isolated from tidal flat sediments enriched with crude oil. Int J Syst Evol Microbiol 2015; 65:2204–2208 [View Article][PubMed]
    [Google Scholar]
  11. Lai Q, Zhou Z, Li G, Li G, Shao Z. Alcanivorax nanhaiticus sp. nov., isolated from deep sea sediment. Int J Syst Evol Microbiol 2016; 66:3651–3655 [View Article][PubMed]
    [Google Scholar]
  12. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  13. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  14. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  15. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  16. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  18. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 1984; 137:247–249 [View Article]
    [Google Scholar]
  19. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  20. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  21. Moore E, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Akkermans ADL, van Elsas JD, de Bruijn FJ. (editors) Molecular Microbial Ecology Manual 1.6 vol.1 Dordrecht: Kluwer; 1999 pp. 1–15
    [Google Scholar]
  22. Ausubel F, Brent R, Kingston R, Moore D, Seidman J et al. Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  24. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  27. Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 2012; 7:e42304 [View Article][PubMed]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  29. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  31. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  32. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–D269 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003145
Loading
/content/journal/ijsem/10.1099/ijsem.0.003145
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error