1887

Abstract

A Gram-stain-negative, strictly aerobic, motile by one polar flagellum, non-spore-forming, rod-shaped bacterium, designated as 190, was isolated from seawater of the West Pacific Ocean and subjected to a polyphasic taxonomic investigation. Colonies were 1.0–2.0 mm in diameter, smooth, circular, convex and white after growth on marine agar at 30 °C for 24 h. Strain 190 was found to grow at 4–40 °C (optimum, 30 °C), at pH 5.5–10.5 (optimum, pH 6.5) and with 0.5–12.5 % (w/v) NaCl (optimum, 2.0 %). Chemotaxonomic analysis showed the sole respiratory quinone was ubiquinone 8 (Q-8), and the major fatty acids were summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), one unidentified aminolipid (AL1) and two unidentified glycolipids (GL1, GL2). The DNA G+C content of strain 190 was 48.7 mol% based on the genome sequence. The comparison of 16S rRNA gene sequence similarities showed that strain 190 was closely related to Alteromonas oceani S35 (99.6 % sequence similarity), A. lipolytica JW12 (98.2 %), A. aestuariivivens JDTF-113 (97.7 %) and A. mediterranea DE (97.5 %); it exhibited 97.0 % or less sequence similarity with the type strains of other species with validly published names. Phylogenetic trees reconstructed with the neighbour-joining, maximum-parsimony and maximum-likelihood methods based on 16S rRNA gene sequences showed that strain 190 constituted a separate branch with A. oceani , A. confluentis , A. aestuariivivens and A. lipolytica in a clade of the genus Alteromonas . OrthoANI values between strain 190 and A. oceani S35 and A. lipolytica JW12 were 93.5 and 77.9 %, respectively, and in silico DNA–DNA hybridization values were 53.8 and 21.2 %, respectively. Differential phenotypic properties, together with phylogenetic distinctiveness, demonstrated that strain 190 is clearly distinct from recognized species of the genus Alteromonas . On the basis of these features, we propose that strain 190 (=MCCC 1K03456=KCTC 62227) represents a novel species of the genus Alteromonas with the name Alteromonas alba sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003151
2019-01-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/278.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003151&mimeType=html&fmt=ahah

References

  1. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972; 110:402–429[PubMed]
    [Google Scholar]
  2. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995; 45:755–761 [View Article][PubMed]
    [Google Scholar]
  3. Sawabe T, Tanaka R, Iqbal MM, Tajima K, Ezura Y et al. Assignment of Alteromonas elyakovii kmm 162t and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int J Syst Evol Microbiol 2000; 50 Pt 1:265–271 [View Article][PubMed]
    [Google Scholar]
  4. Coyne VE, Pillidge CJ, Sledjeski DD, Hori H, Ortiz-Conde BA et al. Reclassification of Alteromonas colwelliana to the genus Shewanella by DNA-DNA hybridization, serology and 5S ribosomal RNA sequence data. Syst Appl Microbiol 1989; 12:275–279 [View Article]
    [Google Scholar]
  5. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  6. Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67:237–242 [View Article][PubMed]
    [Google Scholar]
  7. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 2008; 58:2589–2596 [View Article][PubMed]
    [Google Scholar]
  8. Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E et al. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 2009; 96:259–266 [View Article][PubMed]
    [Google Scholar]
  9. Yoon JH, Yeo SH, Oh TK, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004; 54:1197–1201 [View Article][PubMed]
    [Google Scholar]
  10. Park S, Kang CH, Won SM, Park JM, Kim BC et al. Alteromonas confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015; 65:3603–3608 [View Article][PubMed]
    [Google Scholar]
  11. Williams ST, Davies FL. Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 1965; 38:251–261 [View Article][PubMed]
    [Google Scholar]
  12. Zhang XQ, Wu YH, Zhou X, Zhang X, Xu XW et al. Parvularcula flava sp. nov., an alphaproteobacterium isolated from surface seawater of the south china sea. Int J Syst Evol Microbiol 2016; 66:3498–3502 [View Article][PubMed]
    [Google Scholar]
  13. Sun C, Wu C, Su Y, Wang RJ, Fu GY et al. Hyphococcus flavus gen. nov., sp. nov., a novel alphaproteobacterium isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:4024–4031 [View Article][PubMed]
    [Google Scholar]
  14. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014; 64:2079–2083 [View Article][PubMed]
    [Google Scholar]
  15. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184[PubMed]
    [Google Scholar]
  16. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  17. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  18. Sun C, Fu GY, Zhang CY, Hu J, Xu L et al. Isolation and complete genome sequence of algibacter alginolytica sp. Nov., A novel seaweed-degrading bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016; 82:2975–2987 [View Article][PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  20. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article][PubMed]
    [Google Scholar]
  21. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  27. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  28. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [View Article][PubMed]
    [Google Scholar]
  29. Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 2011; 12:444 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. López-Pérez E, Rodriguez-Valera F. The Family Alteromonadaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes-Gammaproteobacteria, 4th ed. New York: Springer; 2014 pp. 69–92
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  33. Moore L, Moore E, Murray R, Stackebrandt E, Starr M. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol 1987; 37:463–464
    [Google Scholar]
  34. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013; 103:877–884 [View Article][PubMed]
    [Google Scholar]
  35. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie van Leeuwenhoek 2015; 107:119–132 [View Article][PubMed]
    [Google Scholar]
  36. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015; 65:1498–1503 [View Article][PubMed]
    [Google Scholar]
  37. Jin QW, Hu YH, Sun L. Alteromonas oceani sp. nov., isolated from deep-sea sediment of a hydrothermal field. Int J Syst Evol Microbiol 2018; 68:657–662 [View Article][PubMed]
    [Google Scholar]
  38. Yi H, Bae KS, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int J Syst Evol Microbiol 2004; 54:571–576 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003151
Loading
/content/journal/ijsem/10.1099/ijsem.0.003151
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error