1887

Abstract

A polyphasic study was conducted to characterize an obligately anaerobic bacterial strain, S15, that was isolated from Okinawa Trough sediment. Strain S15 was Gram-stain-negative, non-motile and rod-shaped. Spores were not observed. Strain S15 grew anaerobically at 20–35 °C (optimum at 25–30 °C) and at pH range of 6.0–8.5 (optimum at 7.5). Analysis of 16S rRNA gene sequences showed that strain S15 was phylogenetically related to Vallitalea guaymasensis Ra1766G1 (94.0 %) and Vallitalea pronyensis FatNI3 (93.1 %). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and glycolipids. The predominant fatty acids of strain S15 were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and C16 : 0. The draft genome was 5.86 Mb with a DNA G+C content of 33.9 mol%. A total of 5285 genes were predicted and, of those, 4669 genes were annotated. The genome data supported the result that strain S15 assimilated various carbon sources. On the basis of unique phenotypic, chemotaxonomic and phylogenetic comparisons, strain S15 is proposed to represent a novel species within the genus Vallitalea , and the name Vallitalea okinawensis sp. nov. is proposed. The type strain is S15=CGMCC 1.5231=KCTC 15675.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003158
2018-12-12
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/404.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003158&mimeType=html&fmt=ahah

References

  1. Lakhal R, Pradel N, Postec A, Hamdi M, Ollivier B et al. Vallitalea guaymasensis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2013; 63:3019–3023 [View Article][PubMed]
    [Google Scholar]
  2. Ben Aissa F, Postec A, Erauso G, Payri C, Pelletier B et al. Vallitalea pronyensis sp. nov., isolated from a marine alkaline hydrothermal chimney. Int J Syst Evol Microbiol 2014; 64:1160–1165 [View Article][PubMed]
    [Google Scholar]
  3. Tollefson J. China plunges into ocean research. Nature 2014; 506:276 [View Article][PubMed]
    [Google Scholar]
  4. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 1981; 129:395–400[PubMed]
    [Google Scholar]
  5. Kellenberger E, Ryter A, Sechaud J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 1958; 4:671–678 [View Article][PubMed]
    [Google Scholar]
  6. Kurr M, Huber R, Konig H, Jannasch HW, Fricke H et al. Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110C. Arch Microbiol 1991; 156:239–247 [View Article]
    [Google Scholar]
  7. Fardeau ML, Ollivier B, Patel BK, Magot M, Thomas P et al. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 1997; 47:1013–1019 [View Article][PubMed]
    [Google Scholar]
  8. Smibert R, Krieg N, Gerhardt P, Murray R, Wood W et al. Methods for general and molecular microbiology. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Washington, DC: American Society for Microbiology; 1994
  9. Breznak JA, Costilow RN. Physicochemical factors in growth. methods for general and molecular microbiology, third edition. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Washington, DC: American Society of Microbiology; 2007 pp. 309–329
  10. Ai G, Sun T, Dong X. Evaluation of hydrolysis and alcoholysis reactions in gas chromatography/mass spectrometry inlets. J Chromatogr A 2014; 1356:283–288 [View Article][PubMed]
    [Google Scholar]
  11. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  12. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  13. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  14. Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt RM et al. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 2006; 56:2729–2736 [View Article][PubMed]
    [Google Scholar]
  15. Cord-Ruwisch R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 1985; 4:33–36 [View Article]
    [Google Scholar]
  16. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  17. Jiang CY, Liu Y, Liu YY, You XY, Guo X et al. Alicyclobacillus ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil. Int J Syst Evol Microbiol 2008; 58:2898–2903 [View Article][PubMed]
    [Google Scholar]
  18. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Microbial ID, Inc., Newark, DE, USA 1990
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  20. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal w and clustal x version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  22. Phylip FJ. Phylogeny inference package) version 3.5 c. distributed by the author, department of genetics, university of washington, seattle, 1993. Prog Nucleic Acid Res Mol Biol 1993; 33:19–56
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  26. Postec A, Ollivier B, Fardeau ML. Objection to the proposition of the new genus Abyssivirga. Int J Syst Evol Microbiol 2017; 67:174 [View Article][PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  28. Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res 1998; 26:544–548 [View Article][PubMed]
    [Google Scholar]
  29. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  30. Schouw A, Vulcano F, Roalkvam I, Hocking WP, Reeves E et al. Genome analysis of Vallitalea guaymasensis strain L81 Isolated from a deep-sea hydrothermal vent system. Microorganisms 2018; 6:63 [View Article][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  33. Schouw A, Leiknes Eide T, Stokke R, Birger Pedersen R, Helene Steen I et al. Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 2016; 66:1724–1734 [View Article][PubMed]
    [Google Scholar]
  34. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999; 27:4636–4641 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003158
Loading
/content/journal/ijsem/10.1099/ijsem.0.003158
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error