1887

Abstract

A novel actinobacterial strain, designated K81G1, was isolated from a soil sample collected in Kantulee peat swamp forest, Surat Thani Province, Thailand, and its taxonomic position was determined using a polyphasic approach. Optimal growth of strain K81G1 occurred at 28–30 °C, at pH 5.0–6.0 and without NaCl. Strain K81G1 had cell-wall chemotype IV (-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as diagnostic sugars) and phospholipid pattern type II, characteristic of the genus . It contained MK-9(H) as the predominant menaquinone, iso-C, C cyclo and C as the major cellular fatty acids, and phospholipids consisting of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. Based on 16S rRNA gene sequence similarity and phylogenetic analyses, strain K81G1 was most closely related to TBRC 6029 (97.8 % similarity), JCM 30562 (97.8 %) and DSM 45807 (97.6 %). Strain K81G1 exhibited low average nucleotide identity and digital DNA–DNA hybridization values with TBRC 6029 (76.4 %, 23.0 %), JCM 30562 (77.9 %, 24.6 %) and DSM 45807 (77.8 %, 24.3 %). The DNA G+C content of strain K81G1 was 69.7 mol%. Based on data from this polyphasic study, strain K81G1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is K81G1 (=TBRC 10047=NBRC 113896).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003933
2019-12-18
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1547.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003933&mimeType=html&fmt=ahah

References

  1. GYA T, Goodfellow M. Amycolatopsis. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J. (editors) Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015
    [Google Scholar]
  2. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:2007
    [Google Scholar]
  3. Ningsih F, Yokota A, Sakai Y, Nanatani K, Yabe S et al. Gandjariella thermophila gen. nov., sp. nov., a new member of the family Pseudonocardiaceae, isolated from forest soil in a geothermal area. Int J Syst Evol Microbiol 2019; 69:3080–3086 [View Article]
    [Google Scholar]
  4. Labeda DP, Goodfellow M, Chun J, Zhi X-Y, Li W-J. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2011; 61:1259–1264 [View Article]
    [Google Scholar]
  5. Oyuntsetseg B, Cho S-H, Jeon SJ, Lee HB, Shin K-S et al. Amycolatopsis acidiphila sp. nov., a moderately acidophilic species isolated from coal mine soil. Int J Syst Evol Microbiol 2017; 67:3387–3392 [View Article]
    [Google Scholar]
  6. Thawai C. Amycolatopsis rhizosphaerae sp. nov., isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 2018; 68:1546–1551 [View Article]
    [Google Scholar]
  7. Wang J, Leiva S, Huang J, Huang Y. Amycolatopsis antarctica sp. nov., isolated from the surface of an Antarctic brown macroalga. Int J Syst Evol Microbiol 2018; 68:2348–2356 [View Article]
    [Google Scholar]
  8. Porter JN, Wilhelm JJ, Tresner HD. Method for the preferential isolation of actinomycetes from soils. Appl Microbiol 1960; 8:174–178
    [Google Scholar]
  9. Tan GYA, Robinson S, Lacey E, Brown R, Kim W et al. Amycolatopsis regifaucium sp. nov., a novel actinomycete that produces kigamicins. Int J Syst Evol Microbiol 2007; 57:2562–2567 [View Article]
    [Google Scholar]
  10. Waksman SA. The Actinomycetes: Their Nature, Occurrence, Activities, and Importance 70 Waltham, Massachusetts: Chronica Botanica Company; 1950 p 161 [View Article]
    [Google Scholar]
  11. Donadio S. Genus I. Actinospica Cavaletti, Monciardini, Schumann, Rohde, Bamonte, Busti, Sosio and Donadio 2006, 1751VP . In Goodfellow M, Kämpfer P, Busse H-J. (editors) Bergey's Manual of Systematic Bacteriology 2012 New York: Springer; 2006 pp 232–234
    [Google Scholar]
  12. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics Norwich: John Innes Foundation; 2000
    [Google Scholar]
  13. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article]
    [Google Scholar]
  14. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  16. Tarlachkov SV, Starodumova IP. TaxonDC: calculating the similarity value of the 16S rRNA gene sequences of prokaryotes or ITS regions of fungi. J Bioinf Genom 2017; 3:1–4
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  19. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  21. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article]
    [Google Scholar]
  22. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  23. GYA T, Ward AC, Goodfellow M. Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol 2006; 29:557–569
    [Google Scholar]
  24. Flowers TH, Williams ST. Nutritional requirements of acidophilic streptomycetes. Soil Biol Biochem 1977; 9:225–226 [View Article]
    [Google Scholar]
  25. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA et al. Numerical classification of Streptomyces and related genera. Microbiology 1983; 129:1743–1813 [View Article]
    [Google Scholar]
  26. Bora N. Characterization of actinomycetes from smear ripened cheeses – A polyphasic approach. In Bora N, Dodd C, Desmasures N. (editors) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses Cham: Springer International Publishing; 2015 pp 51–101
    [Google Scholar]
  27. Williams S, Davies F, Mayfield C, Khan M. Studies on the ecology of actinomycetes in soil II. The pH requirements of streptomycetes from two acid soils. Soil Biol Biochem 1971; 3:187–195 [View Article]
    [Google Scholar]
  28. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA. Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 1964; 12:421–423
    [Google Scholar]
  29. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231
    [Google Scholar]
  30. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  31. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides . J Bacteriol 1982; 151:828–837
    [Google Scholar]
  32. Minnikin DE, Patel PV, ALSHAMAONY L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003933
Loading
/content/journal/ijsem/10.1099/ijsem.0.003933
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error