1887

Abstract

Eight colonies of live microbes were isolated from an extensively surface-sterilized halite sample which had been retrieved from a depth of 2000 m from a salt mine in the Qianjiang Depression, Hubei Province, PR China. The eight colonies, obtained after 4 weeks of incubation, were named JI20-1–JI20-8 and JI20-1 was selected as the type strain. The strains have been previously described, including a genomic analysis based on the complete genome for strain JI20-1 and draft genomes for the other strains. In that study, the name was suggested, based on the location of the drilling site. Previous phylogenomic analysis showed that strain JI20-1 is most closely related to the Permian isolate from Alpine rock salt. The orthologous average nucleotide identity (orthoANI) and digital DNA–DNA hybridization (dDDH) percentages between the eight strains are 100–99.6 % and 99.8–96.4 %, respectively. The orthoANI and dDDH values of these strains with respect to the type strains of species of the genus are 89.9–78.2 % and 37.3–21.6 %, respectively, supporting their placement in a novel extremely halophilic archaeal species. The phylogenomic tree based on the comparison of sequences of 632 core-orthologous proteins confirmed the novel species status for these haloarchaea. The polar lipid profile includes phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and sulfated galactosyl mannosyl galactosyl glucosyl diether, a profile compatible with that of . Based on genomic, phenotypic, and chemotaxonomic characterization, we propose strain JI20-1 (=DSM 114402 = HAMBI 3616) as the type strain of a novel species in the genus , with the name sp. nov.

Funding
This study was supported by the:
  • Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Award P20_01066 and BIO-213)
    • Principle Award Recipient: AntonioVentosa
  • MCIN/AEI (Award PID2020-118136GB-I00 funded by MCIN/AEI/10.13039/501100011033)
    • Principle Award Recipient: AntonioVentosa
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006296
2024-03-21
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/3/ijsem006296.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006296&mimeType=html&fmt=ahah

References

  1. Grant WD, Kamekura M, McGenity TJ, Ventosa A. Class III. Halobacteria class. nov. In Boone DR, Castenholz RW, Garrity GM. eds Bergey’s Manual of Systematic BacteriologyThe Archaea and the Deeply Branching and Phototrophic Bacteria, 2nd edn. vol 1 New York: Springer; 2001 pp 294–334
    [Google Scholar]
  2. Göker M, Oren A. Valid publication of four additional phylum names. Int J Syst Evol Microbiol 2023; 73:006024
    [Google Scholar]
  3. Oren A, Ventosa A, Kamekura M. Halobacteria. In Whitman WB. eds Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, in Association with Bergey’s Manual Trust; 2017 pp 1–5 [View Article]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Cui C, Han D, Hou J, Cui H-L. Genome-based classification of the class Halobacteria and description of Haladaptataceae fam. nov. and Halorubellaceae fam. nov. Int J Syst Evol Microbiol 2023; 73:005984 [View Article]
    [Google Scholar]
  6. Durán-Viseras A, Sánchez-Porro C, Viver T, Konstantinidis KT, Ventosa A. Discovery of the streamlined haloarchaeon Halorutilus salinus, comprising a new order widespread in hypersaline environments across the world. mSystems 2023; 8:e0119822 [View Article] [PubMed]
    [Google Scholar]
  7. Elazari-Volcani B. Genus XII. Halobacterium. In Breed RS, Murray EGD, Smith NR. eds Bergey’s Manual of Determinative Bacteriology, 7th. edn Baltimore: The Williams & Wilkins Co; 1957 pp 207–212
    [Google Scholar]
  8. Kocur M, Hodgkiss W. Taxonomic status of the genus Halococcus Schoop. Int J Syst Bacteriol 1973; 23:151–156 [View Article]
    [Google Scholar]
  9. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  10. Oren A, Arahal DR, Ventosa A. Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 2009; 59:637–642 [View Article] [PubMed]
    [Google Scholar]
  11. Oren A, Ventosa A. Halobacterium. In Whitman WB. eds Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, in association with Bergey’s Manual Trust; 2017 pp 1–12 [View Article]
    [Google Scholar]
  12. Ventosa A, Oren A. Halobacterium salinarum nom. corrig., a name to replace Halobacterium salinarium (Elazari-Volcani) and to include Halobacterium halobium and Halobacterium cutirubrum. Int J Syst Bacteriol 1996; 46:347 [View Article]
    [Google Scholar]
  13. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G et al. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 2004; 8:431–439 [View Article] [PubMed]
    [Google Scholar]
  14. Myers MR, King GM. Halobacterium bonnevillei sp. nov., Halobaculum saliterrae sp. nov. and Halovenus carboxidivorans sp. nov., three novel carbon monoxide-oxidizing Halobacteria from saline crusts and soils. Int J Syst Evol Microbiol 2020; 70:4261–4268 [View Article] [PubMed]
    [Google Scholar]
  15. Yang Y, Cui H-L, Zhou P-J, Liu S-J. Halobacterium jilantaiense sp. nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2006; 56:2353–2355 [View Article] [PubMed]
    [Google Scholar]
  16. Z-Z, Li Y, Zhou Y, Cui H-L, Li Z-R. Halobacterium litoreum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2017; 67:4095–4099 [View Article] [PubMed]
    [Google Scholar]
  17. Han D, Cui H-L. Halobacterium rubrum sp. nov., isolated from a marine solar saltern. Arch Microbiol 2014; 196:847–851 [View Article] [PubMed]
    [Google Scholar]
  18. Wang B-B, Bao C-X, Sun Y-P, Hou J, Cui H-L. Halobacterium wangiae sp. nov. and Halobacterium zhouii sp. nov., two extremely halophilic archaea isolated from sediment of a salt lake and saline soil of an inland saltern. Int J Syst Evol Microbiol 2023; 73:005922 [View Article] [PubMed]
    [Google Scholar]
  19. Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB et al. Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 2003; 5:1094–1102 [View Article] [PubMed]
    [Google Scholar]
  20. Jaakkola ST, Pfeiffer F, Ravantti JJ, Guo Q, Liu Y et al. The complete genome of a viable archaeum isolated from 123-million-year-old rock salt. Environ Microbiol 2016; 18:565–579 [View Article] [PubMed]
    [Google Scholar]
  21. Dyall-Smith ML. Halohandbook; 2009 www.haloarchaea.com/resources/halohandbook
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  28. Oren A, Ventosa A. Subcommittee on the taxonomy of Halobacteriaceae and subcommittee on the taxonomy of Halomonadaceae. Minutes of the join open meeting, 24 June 2013, Storrs, Connecticut, USA.. Int J Syst Evol Microbiol 2013; 63:3540–3544 [View Article]
    [Google Scholar]
  29. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/ NT. Nucleic Acids Symp Ser 1999; 41:95–98 [PubMed]
    [Google Scholar]
  30. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  32. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2021D801–D807 [View Article] [PubMed]
    [Google Scholar]
  34. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1 [View Article]
    [Google Scholar]
  35. Edgar RC. MUSCLE V5 enables improved estimates of phylogenetic tree confidence by ensemble bootstrapping. bioRxiv 2021; 20:449169
    [Google Scholar]
  36. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  37. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  38. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  39. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  40. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article] [PubMed]
    [Google Scholar]
  41. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  42. Cowan ST, Steel KJ. Manual para la Identificación de Bacterias de Importancia Médica México, DF: Compañía Editorial Continental; 1982
    [Google Scholar]
  43. Koser SA. Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 1923; 8:493–520 [View Article] [PubMed]
    [Google Scholar]
  44. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  45. Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A. Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 2012; 1818:1365–1373 [View Article] [PubMed]
    [Google Scholar]
  46. Corral P, Gutiérrez MC, Castillo AM, Domínguez M, Lopalco P et al. Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:104–108 [View Article] [PubMed]
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  48. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  49. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article]
    [Google Scholar]
  50. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  51. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  52. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  53. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006296
Loading
/content/journal/ijsem/10.1099/ijsem.0.006296
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error