1887

Abstract

A Gram-stain-positive bacterium, designated YN-L-19, was isolated from a sludge sample collected from a pesticide-manufacturing plant. Cells of YN-L-19 were strictly aerobic, non-spore-forming, non-motile and ovoid-shaped. Colonies were small, smooth and yellow. Growth occurred at 10–37 °C (optimum, 30 °C), pH 5.0–9.0 (optimum, 7.0) and 0–3.0 % (w/v) NaCl (optimum 0.5 %). Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that YN-L-19 was affiliated to the family and most closely related to , , and . The major cellular fatty acids of YN-L-19 were anteiso-C, anteiso-C, iso-C and C. The predominant menaquinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unidentified lipid. The average amino acid identity values between strain YN-L-19 and the related strains were 57.9–61.9 %, which were below the genus boundary (70 %). On the basis of the evidence presented in this study, strain YN-L-19 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. (type strain YN-L-19=CCTCC AB 2022401= KCTC 49935) is proposed.

Funding
This study was supported by the:
  • Science and Technology Program of Jiangsu Province (Award BM2022019)
    • Principle Award Recipient: HeJian
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006302
2024-03-26
2024-04-27
Loading full text...

Full text loading...

References

  1. Park YH, Suzuki K, Yim DG, Lee KC, Kim E et al. Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 1993; 64:307–313 [View Article] [PubMed]
    [Google Scholar]
  2. Evtushenko LI, Takeuchi M. The family Microbacteriaceae. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes, 3rd. vol 3 New York: Springer; 2006 pp 1020–1098 [View Article]
    [Google Scholar]
  3. Zhuo Y, Jin C-Z, Jin F-J, Li T, Kang DH et al. Lacisediminihabitans profunda gen. nov., sp. nov., a member of the family Microbacteriaceae isolated from freshwater sediment. Antonie van Leeuwenhoek 2020; 113:365–375 [View Article] [PubMed]
    [Google Scholar]
  4. Zhang L, Xu Z, Patel BKC. Frondihabitans australicus gen. nov., sp. nov., isolated from decaying leaf litter from a pine forest.. Int J Syst Evol Microbiol 2007; 57:1177–1182 [View Article] [PubMed]
    [Google Scholar]
  5. Kämpfer P, Rainey FA, Andersson MA, Nurmiaho Lassila EL, Ulrych U et al. Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 2000; 50:355–363 [View Article] [PubMed]
    [Google Scholar]
  6. Liu S-W, Li F-N, Zheng H-Y, Qi X, Huang D-L et al. Planctomonas deserti gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from soil of the Taklamakan desert. Int J Syst Evol Microbiol 2019; 69:616–624 [View Article] [PubMed]
    [Google Scholar]
  7. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  8. Süßmuth R, Eberspächer J, Haag R, Springer W. Biochemisch-Mikrobiologisches Praktikum Stuttgart: Georg Thieme Verlag; 1987
    [Google Scholar]
  9. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related axa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  10. Peltroche-Llacsahuanga H, Schmidt S, Seibold M, Lütticken R, Haase G. Differentiation between Candida dubliniensis and Candida albicans by fatty acid methyl ester analysis using gas-liquid chromatography. J Clin Microbiol 2000; 38:3696–3704 [View Article] [PubMed]
    [Google Scholar]
  11. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiology Letters 1990; 66:199–202 [View Article]
    [Google Scholar]
  12. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  13. Tamaoka J, Katayama‐Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  14. Sambrook J, Russel DW. Molecular Cloning: A Laboratory Manual Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2007
    [Google Scholar]
  15. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  16. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article] [PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  24. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  25. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  26. Luo R, Liu B, Xie Y, Li Z, Huang W et al. Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2015; 4:30 [View Article] [PubMed]
    [Google Scholar]
  27. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  28. Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 2022; 50:D571–D577 [View Article] [PubMed]
    [Google Scholar]
  29. Zheng J, Ge Q, Yan Y, Zhang X, Huang L et al. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res 2023; 51:W115–W121 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  31. Hua Z-S, Qu Y-N, Zhu Q, Zhou E-M, Qi Y-L et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat Commun 2018; 9:2832 [View Article] [PubMed]
    [Google Scholar]
  32. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  33. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  34. Jang Y-H, Kim S-J, Hamada M, Tamura T, Ahn J-H et al. Diaminobutyricimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. J Microbiol 2012; 50:1047–1052 [View Article] [PubMed]
    [Google Scholar]
  35. Dastager SG, Lee J-C, Ju Y-J, Park D-J, Kim C-J. Cryobacterium mesophilum sp. nov., a novel mesophilic bacterium. Int J Syst Evol Microbiol 2008; 58:1241–1244 [View Article] [PubMed]
    [Google Scholar]
  36. Kim S-J, Lim J-M, Ahn J-H, Weon H-Y, Hamada M et al. Description of Galbitalea soli gen. nov., sp. nov., and Frondihabitans sucicola sp. nov. Int J Syst Evol Microbiol 2014; 64:572–578 [View Article] [PubMed]
    [Google Scholar]
  37. Liang Y, Jiang P, Yao B, Jiao Y, Li J. Lacisediminihabitans changchengi sp. nov., an actinobacterium isolated from Antarctic swamplands mud. Arch Microbiol 2021; 203:5519–5524 [View Article] [PubMed]
    [Google Scholar]
  38. Wang H-F, Zhang Y-G, Chen J-Y, Guo J-W, Li L et al. Frigoribacterium endophyticum sp. nov., an endophytic actinobacterium isolated from the root of Anabasis elatior (C. A. Mey.) Schischk. Int J Syst Evol Microbiol 2015; 65:1207–1212 [View Article] [PubMed]
    [Google Scholar]
  39. Kong D, Guo X, Zhou S, Wang H, Wang Y et al. Frigoribacterium salinisoli sp. nov., isolated from saline soil, transfer of Frigoribacterium mesophilum to Parafrigoribacterium gen. nov. as Parafrigoribacterium mesophilum comb. nov. Int J Syst Evol Microbiol 2016; 66:5252–5259 [View Article] [PubMed]
    [Google Scholar]
  40. Cardinale M, Grube M, Berg G. Frondihabitans cladoniiphilus sp. nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. Int J Syst Evol Microbiol 2011; 61:3033–3038 [View Article] [PubMed]
    [Google Scholar]
  41. Aizawa T, Ve NB, Kimoto K-I, Iwabuchi N, Sumida H et al. Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 2007; 57:1447–1452 [View Article] [PubMed]
    [Google Scholar]
  42. Kim MK, Kim Y-J, Kim H-B, Kim S-Y, Yi T-H et al. Curtobacterium ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2008; 58:2393–2397 [View Article] [PubMed]
    [Google Scholar]
  43. Li X-J, Wang C-M, Feng X-M, Liu S-W, Qiao H-X et al. Planctomonas psychrotolerans sp. nov., isolated from rhizosphere soil of Suaeda salsa. Int J Syst Evol Microbiol 2020; 70:5271–5279 [View Article]
    [Google Scholar]
  44. Cook DM, Henriksen ED, Rogers TE, Peterson JD. Klugiella xanthotipulae gen. nov., sp. nov., a novel member of the family Microbacteriaceae. Int J Syst Evol Microbiol 2008; 58:2782
    [Google Scholar]
  45. Schumann P, Zhang DC, Redzic M, Margesin R. Alpinimonas psychrophila gen. nov., sp. nov., an actinobacterium of the family Microbacteriaceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012; 62:2724–2730 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006302
Loading
/content/journal/ijsem/10.1099/ijsem.0.006302
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error