1887

Abstract

Three bacterial strains, FP250, FP821, and FP53, were isolated from the rhizosphere soil of oilseed rape, licorice, and habanero pepper in Anhui Province, Xinjiang Uygur Autonomous Region, and Jiangsu Province, PR China, respectively. All strains were shown to grow at 4–37 °C and pH 6.0–9.0, and in the presence of 0–4.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences or housekeeping genes (16S rRNA, , , and ) and phylogenomic analysis showed that strains FP250, FP821, and FP53 belong to the genus , and are closely related to DSM 13647, JCM 11938, 11K1, and DSM 13194. The DNA G+C content of strain FP205 was 59.8 mol%. The average nucleotide identity and digital DNA–DNA hybridization values of strain FP205 with the most closely related strain were 93.2 % and 51.4 %, respectively, which is well below the threshold for species differentiation. Strain FP205 contained summed feature 3 (C 6 and/or C 7), summed feature 8 (C 7 and/or C 6) as major fatty acids, and diphosphatidylglycerol along with phosphatidylethanolamine and aminophospholipid as major polar lipids. The predominant isoprenoid quinone was ubiquinone-9. Based on these phenotypic, phylogenetic, and chemotaxonomic results, strain FP205 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FP205 (=ACCC 62447=JCM 35687).

Funding
This study was supported by the:
  • the National Key R&D Program of China (Award 2022YFD1901300)
    • Principle Award Recipient: WeiHai-Lei
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006303
2024-03-27
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/3/ijsem006303.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006303&mimeType=html&fmt=ahah

References

  1. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  2. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  3. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015; 6:214 [View Article] [PubMed]
    [Google Scholar]
  4. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 2016; 11:e0150183 [View Article] [PubMed]
    [Google Scholar]
  5. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [View Article] [PubMed]
    [Google Scholar]
  6. Holt JG. Genus I Pseudomonas Migula 1894. In Krieg NR, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol 1 Baltimore, MD: Williams & Wilkins; 1984 pp 141–171
    [Google Scholar]
  7. Oyaizu H, Komagata K. Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 1983; 29:17–40 [View Article]
    [Google Scholar]
  8. Remold SK, Brown CK, Farris JE, Hundley TC, Perpich JA et al. Differential habitat use and niche partitioning by Pseudomonas species in human homes. Microb Ecol 2011; 62:505–517 [View Article] [PubMed]
    [Google Scholar]
  9. Spiers AJ, Buckling A, Rainey PB. The causes of Pseudomonas diversity. Microbiology 2000; 146:2345–2350 [View Article] [PubMed]
    [Google Scholar]
  10. McKay Fletcher DM, Ruiz S, Dias T, Petroselli C, Roose T. Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake. New Phytol 2020; 227:376–391 [View Article] [PubMed]
    [Google Scholar]
  11. Chai YN, Schachtman DP. Root exudates impact plant performance under abiotic stress. Trends Plant Sci 2022; 27:80–91 [View Article] [PubMed]
    [Google Scholar]
  12. Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005; 71:4951–4959 [View Article] [PubMed]
    [Google Scholar]
  13. Rodríguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 1999; 17:319–339 [View Article] [PubMed]
    [Google Scholar]
  14. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003; 255:571–586 [View Article]
    [Google Scholar]
  15. Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 2009; 63:541–556 [View Article] [PubMed]
    [Google Scholar]
  16. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407–438 [View Article] [PubMed]
    [Google Scholar]
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  20. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  22. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  23. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  24. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  25. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  27. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005; 33:W686–9 [View Article] [PubMed]
    [Google Scholar]
  28. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  29. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  31. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  32. Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 2022; 50:D571–D577 [View Article] [PubMed]
    [Google Scholar]
  33. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:23080 [View Article] [PubMed]
    [Google Scholar]
  34. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997; 278:631–637 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  36. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  37. Sieber S, Daeppen C, Jenul C, Mannancherril V, Eberl L et al. Biosynthesis and structure-activity relationship investigations of the diazeniumdiolate antifungal agent fragin. Chembiochem 2020; 21:1587–1592 [View Article] [PubMed]
    [Google Scholar]
  38. Sur S, Grossfield A. Effects of cholesterol on the mechanism of fengycin, a biofungicide. Biophys J 2022; 121:1963–1974 [View Article] [PubMed]
    [Google Scholar]
  39. Cai L, Yao Y, Yeon SK, Seiple IB. Modular approaches to lankacidin antibiotics. J Am Chem Soc 2020; 142:15116–15126 [View Article] [PubMed]
    [Google Scholar]
  40. Visca P, Imperi F, Lamont IL. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 2007; 15:22–30 [View Article] [PubMed]
    [Google Scholar]
  41. Matthijs S, Brandt N, Ongena M, Achouak W, Meyer J-M et al. Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis. Biometals 2016; 29:467–485 [View Article] [PubMed]
    [Google Scholar]
  42. Szabó T, Volk B, Milen M. Recent advances in the synthesis of β-carboline alkaloids. Molecules 2021; 26:663 [View Article] [PubMed]
    [Google Scholar]
  43. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  44. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307 [PubMed]
    [Google Scholar]
  45. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Met 1984; 2:233–241 [View Article]
    [Google Scholar]
  46. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  47. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981; 51:129–134 [View Article] [PubMed]
    [Google Scholar]
  48. Zhao H, Ma Y, Wu X, Zhang L. Pseudomonas viciae sp. nov., isolated from rhizosphere of broad bean. Int J Syst Evol Microbiol 2020; 70:5012–5018 [View Article] [PubMed]
    [Google Scholar]
  49. Kim CM, Jeong JW, Lee DH, Kim SB. Pseudomonas guryensis sp. nov. and Pseudomonas ullengensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2021; 71:005082 [View Article] [PubMed]
    [Google Scholar]
  50. Lee DH, Kim CM, Kim SB. Pseudomonas insulae sp. nov., isolated from island soil. Int J Syst Evol Microbiol 2022; 72:005363 [View Article] [PubMed]
    [Google Scholar]
  51. Ntana F, Hennessy RC, Zervas A, Stougaard P. Pseudomonas nunensis sp. nov. isolated from a suppressive potato field in Greenland. Int J Syst Evol Microbiol 2023; 73:005700 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006303
Loading
/content/journal/ijsem/10.1099/ijsem.0.006303
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error